Lecture 8

Problem 47. Verify that Theorem 8.7 holds for the examples shown in class (S3,C5,D4S_{3},C_{5},D_{4}).

Solution:

  1. (a)

    S3S_{3}: The character table reads

    ee (1 2)(1\;2) (1 2 3)(1\;2\;3)
    (Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1
    (sgn,)(\mathrm{sgn},{\mathbb{C}}) 1 -1 1
    (π,W0)(\pi,W_{0}), 2 0 -1

    The conjugacy classes have sizes as follows [e][e]: 1, [(1 2)][(1\;2)]: 3, [(1 2 3)][(1\;2\;3)]: 2. The norms of the columns are computed:

    12+12+22=6=61,12+(1)2+02=2=63,12+12+(1)2=3=62,1^{2}+1^{2}+2^{2}=6=\frac{6}{1},\quad 1^{2}+(-1)^{2}+0^{2}=2=\frac{6}{3},\quad 1% ^{2}+1^{2}+(-1)^{2}=3=\frac{6}{2},

    and the inner products between different columns are easily seen to be zero:

    𝒞1𝒞2=11+1(1)+20=0,𝒞1𝒞3=11+11+2(1)=0,𝒞2𝒞3=11+(1)1+0(1)=0.{\mathcal{C}}_{1}\cdot{\mathcal{C}}_{2}=1\cdot 1+1\cdot(-1)+2\cdot 0=0,\quad{% \mathcal{C}}_{1}\cdot{\mathcal{C}}_{3}=1\cdot 1+1\cdot 1+2\cdot(-1)=0,\quad{% \mathcal{C}}_{2}\cdot{\mathcal{C}}_{3}=1\cdot 1+(-1)\cdot 1+0\cdot(-1)=0.

    We now compute the norms of the rows (with the weights given by the size of each conjugacy class):

    16(112+312+212)=66=1,16(112+3(1)2+212)=66=1,16(122+302+2(1)2)=66=1.\frac{1}{6}(1\cdot 1^{2}+3\cdot 1^{2}+2\cdot 1^{2})=\frac{6}{6}=1,\quad\frac{1% }{6}(1\cdot 1^{2}+3\cdot(-1)^{2}+2\cdot 1^{2})=\frac{6}{6}=1,\frac{1}{6}(1% \cdot 2^{2}+3\cdot 0^{2}+2\cdot(-1)^{2})=\frac{6}{6}=1.

    Row orthogonality is also easily shown:

    χId,χsgnG=16(1(1)(1)+3(1)(1)+2(1)(1))=0\displaystyle\langle\chi_{{\,\mathrm{Id}}},\chi_{\operatorname{sgn}}\rangle_{G% }=\frac{1}{6}\big{(}1(1)(1)+3(1)(-1)+2(1)(1)\big{)}=0
    χId,χπG=16(1(1)(2)+3(1)(0)+2(1)(1))=0\displaystyle\langle\chi_{{\,\mathrm{Id}}},\chi_{\pi}\rangle_{G}=\frac{1}{6}% \big{(}1(1)(2)+3(1)(0)+2(1)(-1)\big{)}=0
    χsgn,χπG=16(1(1)(2)+3(1)(0)+2(1)(1))=0.\displaystyle\langle\chi_{\operatorname{sgn}},\chi_{\pi}\rangle_{G}=\frac{1}{6% }\big{(}1(1)(2)+3(-1)(0)+2(1)(-1)\big{)}=0.
  2. (b)

    C5C_{5}. Let ω=e2πi/5\omega=e^{2\pi i/5}. The character table then reads

    0 1 2 3 4
    (Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1 1
    (χ1,)(\chi_{1},{\mathbb{C}}) 11 ω\omega ω2\omega^{2} ω3\omega^{3} ω4\omega^{4}
    (χ2,)(\chi_{2},{\mathbb{C}}) 11 ω2\omega^{2} ω4\omega^{4} ω\omega ω3\omega^{3}
    (χ3,)(\chi_{3},{\mathbb{C}}) 11 ω3\omega^{3} ω\omega ω4\omega^{4} ω2\omega^{2}
    (χ4,)(\chi_{4},{\mathbb{C}}) 11 ω4\omega^{4} ω3\omega^{3} ω2\omega^{2} ω\omega

    We observe that the first row and the first column are identical, and both are of unit length:

    15(12+12+12+12+12)=1.\frac{1}{5}(1^{2}+1^{2}+1^{2}+1^{2}+1^{2})=1.

    The remaining rows and columns are identical (up to permutation), thus they also all have norm one:

    15(|1|2+|ω|2+|ω2|2+|ω3|2+|ω4|2)=15(12+12+12+12+12)=1.\frac{1}{5}(|1|^{2}+|\omega|^{2}+|\omega^{2}|^{2}+|\omega^{3}|^{2}+|\omega^{4}% |^{2})=\frac{1}{5}(1^{2}+1^{2}+1^{2}+1^{2}+1^{2})=1.

    The inner product of these rows/columns with the first row/column is zero, since

    1+ω+ω2+ω3+ω4=0.1+\omega+\omega^{2}+\omega^{3}+\omega^{4}=0.

    It remains to show row/column orthogonality. Firstly, the inner product of one of the “non-trivial” rows/columns with the first row/column gives

    11+ω1+ω21+ω31+ω41=1ω51ω=0.1\cdot 1+\omega\cdot 1+\omega^{2}\cdot 1+\omega^{3}\cdot 1+\omega^{4}\cdot 1=% \frac{1-\omega^{5}}{1-\omega}=0.

    For the inner product of two distinct non-trivial rows/columns the relevant sum is of the form (for some j{1}j\in{\mathbb{N}}\setminus\{1\})

    11+ωωj¯+ω2(ω2)j¯+ω3(ω3)j¯+ω4(ω4)j¯\displaystyle 1\cdot 1+\omega\cdot\overline{\omega^{j}}+\omega^{2}\cdot% \overline{(\omega^{2})^{j}}+\omega^{3}\cdot\overline{(\omega^{3})^{j}}+\omega^% {4}\cdot\overline{(\omega^{4})^{j}}
    =1+ω1j+ω(1j)2+ω(1j)3+ω(1j)4\displaystyle=1+\omega^{1-j}+\omega^{(1-j)2}+\omega^{(1-j)3}+\omega^{(1-j)4}
    =1ω5(1j)1ω=0.\displaystyle=\frac{1-\omega^{5(1-j)}}{1-\omega}=0.
  3. (c)

    The character table of D4D_{4} reads:

    size: 1 1 2 2 2
    ee r2r^{2} rr ss srsr
    (Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1 1
    (π+,)(\pi_{+-},{\mathbb{C}}) 11 11 11 1-1 1-1
    (π+,)(\pi_{-+},{\mathbb{C}}) 11 11 1-1 11 1-1
    (π,)(\pi_{--},{\mathbb{C}}) 11 11 1-1 1-1 11
    (ρ,2)(\rho,{\mathbb{C}}^{2}) 22 2-2 0 0 0

    Thus the norm of the any of the first four rows equals

    18(12+12+2((±1)2+(±1)2+(±1)2)=1,\frac{1}{8}(1^{2}+1^{2}+2\big{(}(\pm 1)^{2}+(\pm 1)^{2}+(\pm 1)^{2}\big{)}=1,

    and the norm of the final row is

    18(22+(±2)2+2(02+02+02))=1.\frac{1}{8}(2^{2}+(\pm 2)^{2}+2(0^{2}+0^{2}+0^{2}))=1.

    Similarly, the norm of the first two columns equals

    12+12+12+12+(±2)2=81,1^{2}+1^{2}+1^{2}+1^{2}+(\pm 2)^{2}=\frac{8}{1},

    whereas the norm of any of the last four columns equals

    12+(±1)2+(±1)2+(±1)2=82.1^{2}+(\pm 1)^{2}+(\pm 1)^{2}+(\pm 1)^{2}=\frac{8}{2}.

    The inner product of the first two columns equals

    11+11+11+11+2(2)=0,1\cdot 1+1\cdot 1+1\cdot 1+1\cdot 1+2\cdot(-2)=0,

    the inner product of one of the first two columns with any of the last three is

    1+111+(±2))0=0,1+1-1-1+(\pm 2))\cdot 0=0,

    and the inner product of any two distinct columns out of the last three is

    11+(1)1+1(1)+(1)(1)+00=0.1\cdot 1+(-1)\cdot 1+1\cdot(-1)+(-1)\cdot(-1)+0\cdot 0=0.

    The inner product of the last row with any of the first four equals

    18(21+(2)1+2(0(±1)+0(±1)+0(±1)))=0,\frac{1}{8}\big{(}2\cdot 1+(-2)\cdot 1+2(0\cdot(\pm 1)+0\cdot(\pm 1)+0\cdot(% \pm 1))\big{)}=0,

    and the inner product of the first row with any of rows two to four equals

    18(11+11+2(11+1(1)+1(1)))=0.\frac{1}{8}\big{(}1\cdot 1+1\cdot 1+2(1\cdot 1+1\cdot(-1)+1\cdot(-1))\big{)}=0.

    Finally, the inner product of two distinct rows from two to four equals

    18(11+11+2(1(1)+(1)1+(1)(1)))=0.\frac{1}{8}\big{(}1\cdot 1+1\cdot 1+2(1\cdot(-1)+(-1)\cdot 1+(-1)\cdot(-1))% \big{)}=0.

Problem 48. Compute the character tables of the following groups (You shouldn’t need to use Theorem 8.7 for this):

  1. (a)

    C9C_{9}

  2. (b)

    C3×C3C_{3}\times C_{3}

  3. (c)

    D5D_{5}

  4. (d)

    Q8Q_{8}

  5. (e)

    DnD_{n}

(You will need to find the conjugacy classes and irreducible representations for each of these groups. See the exercises from previous lectures! )

Solution:

  1. (a)

    This is an Abelian group, so every element is its own conjugacy class. The irreducible representations are all one-dimensional. Let ω=e2πi/9\omega=e^{2\pi i/9}. Then each irreducible representation is of the form (ψj,)(\psi_{j},{\mathbb{C}}), where ψj(k)=ωjk\psi_{j}(k)=\omega^{jk}. The table character table then reads

    0 11 22 33 44 5 6 7 8
    (Id,)({\,\mathrm{Id}},{\mathbb{C}}) 11 11 11 11 11 1 1 1 1
    (ψ1,)(\psi_{1},{\mathbb{C}}) 11 ω\omega ω2\omega^{2} ω3\omega^{3} ω4\omega^{4} ω5\omega^{5} ω6\omega^{6} ω7\omega^{7} ω8\omega^{8}
    (ψ2,)(\psi_{2},{\mathbb{C}}) 11 ω2\omega^{2} ω4\omega^{4} ω6\omega^{6} ω8\omega^{8} ω\omega ω3\omega^{3} ω5\omega^{5} ω7\omega^{7}
    (ψ3,)(\psi_{3},{\mathbb{C}}) 11 ω3\omega^{3} ω6\omega^{6} 11 ω3\omega^{3} ω6\omega^{6} 11 ω3\omega^{3} ω6\omega^{6}
    (ψ4,)(\psi_{4},{\mathbb{C}}) 11 ω4\omega^{4} ω8\omega^{8} ω3\omega^{3} ω4\omega^{4} ω5\omega^{5} ω6\omega^{6} ω7\omega^{7} ω8\omega^{8}
    (ψ5,)(\psi_{5},{\mathbb{C}}) 11 ω5\omega^{5} ω\omega ω6\omega^{6} ω2\omega^{2} ω7\omega^{7} ω3\omega^{3} ω8\omega^{8} ω4\omega^{4}
    (ψ6,)(\psi_{6},{\mathbb{C}}) 11 ω6\omega^{6} ω3\omega^{3} 11 ω6\omega^{6} ω3\omega^{3} 11 ω6\omega^{6} ω3\omega^{3}
    (ψ7,)(\psi_{7},{\mathbb{C}}) 11 ω7\omega^{7} ω5\omega^{5} ω3\omega^{3} ω\omega ω8\omega^{8} ω6\omega^{6} ω4\omega^{4} ω2\omega^{2}
    (ψ8,)(\psi_{8},{\mathbb{C}}) 11 ω8\omega^{8} ω7\omega^{7} ω6\omega^{6} ω5\omega^{5} ω4\omega^{4} ω3\omega^{3} ω2\omega^{2} ω\omega
  2. (b)

    Also an Abelian group, with nine conjugacy classes. The irreducible representations factor as a product of two irreducible representations of C3C_{3}, i.e. they are given as (ψj,k,)(\psi_{j,k},{\mathbb{C}}), where ψj,k(a,b)=ωaj+bk\psi_{j,k}(a,b)=\omega^{aj+bk}, where ω=e2πi/3\omega=e^{2\pi i/3}. The character table reads

    (0,0)(0,0) (1,0)(1,0) (2,0)(2,0) (0,1)(0,1) (1,1)(1,1) (2,1)(2,1) (0,2)(0,2) (1,2)(1,2) (2,2)(2,2)
    (Id,)({\,\mathrm{Id}},{\mathbb{C}}) 11 11 11 11 11 1 1 1 1
    (ψ1,0,)(\psi_{1,0},{\mathbb{C}}) 11 ω\omega ω2\omega^{2} 11 ω\omega ω2\omega^{2} 11 ω\omega ω2\omega^{2}
    (ψ2,0,)(\psi_{2,0},{\mathbb{C}}) 11 ω2\omega^{2} ω\omega 11 ω2\omega^{2} ω\omega 11 ω2\omega^{2} ω\omega
    (ψ0,1,)(\psi_{0,1},{\mathbb{C}}) 11 11 11 ω\omega ω\omega ω\omega ω2\omega^{2} ω2\omega^{2} ω2\omega^{2}
    (ψ1,1,)(\psi_{1,1},{\mathbb{C}}) 11 ω\omega ω2\omega^{2} ω\omega ω2\omega^{2} 11 ω2\omega^{2} 11 ω\omega
    (ψ2,1,)(\psi_{2,1},{\mathbb{C}}) 11 ω2\omega^{2} ω\omega ω\omega 11 ω2\omega^{2} ω2\omega^{2} ω\omega 11
    (ψ0,2,)(\psi_{0,2},{\mathbb{C}}) 11 11 11 ω2\omega^{2} ω2\omega^{2} ω2\omega^{2} ω\omega ω\omega ω\omega
    (ψ1,2,)(\psi_{1,2},{\mathbb{C}}) 11 ω\omega ω2\omega^{2} ω2\omega^{2} 11 ω\omega ω\omega ω2\omega^{2} 11
    (ψ2,2,)(\psi_{2,2},{\mathbb{C}}) 11 ω2\omega^{2} ω\omega ω2\omega^{2} ω\omega 11 ω\omega 11 ω2\omega^{2}
  3. (c)

    We have a complete classification of the irreducible representations from Lecture 4. The conjugacy classes are given in Problem 5 Prerequisites: there are two one-dimensional representations and to irreducible two-dimensional representations. Filling in the table gives

    size: 1 2 2 5
    ee rr r2r^{2} ss
    (Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1
    (ϵ,)(\epsilon,{\mathbb{C}}) 11 11 11 1-1
    (ρ1,2)(\rho_{1},{\mathbb{C}}^{2}) 22 2cos(2π5)2\cos({\textstyle\frac{2\pi}{5}}) 2cos(4π5)2\cos({\textstyle\frac{4\pi}{5}}) 0
    (ρ2,2)(\rho_{2},{\mathbb{C}}^{2}) 22 2cos(4π5)2\cos({\textstyle\frac{4\pi}{5}}) 2cos(2π5)2\cos({\textstyle\frac{2\pi}{5}}) 0
  4. (d)

    The conjugacy classes were computed in Problem 3 Prerequisites, and the irreducible representations in Problem 22 1. Putting these together gives the character table:

    size: 1 1 2 2 2
    11 -1 ii jj kk
    (Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1 1
    (πi,)(\pi_{i},{\mathbb{C}}) 11 11 11 1-1 1-1
    (πj,)(\pi_{j},{\mathbb{C}}) 11 11 1-1 11 1-1
    (πk,)(\pi_{k},{\mathbb{C}}) 11 11 1-1 1-1 11
    (π,2)(\pi,{\mathbb{C}}^{2}) 22 2-2 0 0 0

    Funny observation: this is the “same” as the table of D4D_{4}!

  5. (e)

    We combine the result of Problem 5 Prerequisites with the classification of irreducible representations from Lecture 4. It will be convenient to split into two cases:

    Even nn:

    size: 1 1 2 2 \cdots 2 n/2n/2 n/2n/2
    ee rn/2r^{n/2} rr r2r^{2} \ldots rn/21r^{n/2-1} ss srsr
    (Id,)({\,\mathrm{Id}},{\mathbb{C}}) 11 11 11 11 \ldots 11 11 11
    (π+,)(\pi_{+-},{\mathbb{C}}) 11 11 11 11 \ldots 11 1-1 11
    (π+,)(\pi_{-+},{\mathbb{C}}) 11 (1)n/2(-1)^{n/2} 1-1 11 \ldots (1)n/21(-1)^{n/2-1} 11 1-1
    (π,)(\pi_{--},{\mathbb{C}}) 11 (1)n/2(-1)^{n/2} 1-1 11 \ldots (1)n/21(-1)^{n/2-1} 1-1 11
    (ρ1,2)(\rho_{1},{\mathbb{C}}^{2}) 22 2cos(1π)2\cos(1\pi) 2cos(12πn)2\cos(1\cdot{\textstyle\frac{2\pi}{n}}) 2cos(212πn)2\cos(2\cdot 1\cdot{\textstyle\frac{2\pi}{n}}) \ldots 2cos((n21)12πn)2\cos(({\textstyle\frac{n}{2}}-1)\cdot 1\cdot{\textstyle\frac{2\pi}{n}}) 0 0
    (ρ2,2)(\rho_{2},{\mathbb{C}}^{2}) 22 2cos(2π)2\cos(2\pi) 2cos(22πn)2\cos(2\cdot{\textstyle\frac{2\pi}{n}}) 2cos(222πn)2\cos(2\cdot 2\cdot{\textstyle\frac{2\pi}{n}}) \ldots 2cos((n21)22πn)2\cos(({\textstyle\frac{n}{2}}-1)\cdot 2\cdot{\textstyle\frac{2\pi}{n}}) 0 0
    (ρ3,2)(\rho_{3},{\mathbb{C}}^{2}) 22 2cos(3π)2\cos(3\pi) 2cos(32πn)2\cos(3\cdot{\textstyle\frac{2\pi}{n}}) 2cos(232πn)2\cos(2\cdot 3\cdot{\textstyle\frac{2\pi}{n}}) \ldots 2cos((n21)32πn)2\cos(({\textstyle\frac{n}{2}}-1)\cdot 3\cdot{\textstyle\frac{2\pi}{n}}) 0 0
    \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots
    (ρn/21,2)(\rho_{n/2-1},{\mathbb{C}}^{2}) 22 2cos((n21)π)2\cos\big{(}({\textstyle\frac{n}{2}}-1)\pi\big{)} 2cos((n21)2πn)2\cos\big{(}({\textstyle\frac{n}{2}}-1)\cdot{\textstyle\frac{2\pi}{n}}\big{)} 2cos(2(n21)2πn)2\cos(2\cdot({\textstyle\frac{n}{2}}-1)\cdot{\textstyle\frac{2\pi}{n}}) \ldots 2cos((n21)22πn)2\cos(({\textstyle\frac{n}{2}}-1)^{2}\cdot{\textstyle\frac{2\pi}{n}}) 0 0

    Odd nn:

    size: 1 2 2 \cdots 2 nn
    ee rr r2r^{2} \ldots r(n1)/2r^{(n-1)/2} ss
    (Id,)({\,\mathrm{Id}},{\mathbb{C}}) 11 11 11 \ldots 11 11
    (ϵ,)(\epsilon,{\mathbb{C}}) 11 11 11 \ldots 11 1-1
    (ρ1,2)(\rho_{1},{\mathbb{C}}^{2}) 22 2cos(12πn)2\cos(1\cdot{\textstyle\frac{2\pi}{n}}) 2cos(212πn)2\cos(2\cdot 1\cdot{\textstyle\frac{2\pi}{n}}) \ldots 2cos(n1212πn)2\cos({\textstyle\frac{n-1}{2}}\cdot 1\cdot{\textstyle\frac{2\pi}{n}}) 0
    (ρ2,2)(\rho_{2},{\mathbb{C}}^{2}) 22 2cos(22πn)2\cos(2\cdot{\textstyle\frac{2\pi}{n}}) 2cos(222πn)2\cos(2\cdot 2\cdot{\textstyle\frac{2\pi}{n}}) \ldots 2cos(n1222πn)2\cos({\textstyle\frac{n-1}{2}}\cdot 2\cdot{\textstyle\frac{2\pi}{n}}) 0
    (ρ3,2)(\rho_{3},{\mathbb{C}}^{2}) 22 2cos(32πn)2\cos(3\cdot{\textstyle\frac{2\pi}{n}}) 2cos(232πn)2\cos(2\cdot 3\cdot{\textstyle\frac{2\pi}{n}}) \ldots 2cos(n1232πn)2\cos({\textstyle\frac{n-1}{2}}\cdot 3\cdot{\textstyle\frac{2\pi}{n}}) 0
    \vdots \vdots \vdots \vdots \vdots \vdots \vdots
    (ρn12,2)(\rho_{{\textstyle\frac{n-1}{2}}},{\mathbb{C}}^{2}) 22 2cos(n122πn)2\cos({\textstyle\frac{n-1}{2}}\cdot{\textstyle\frac{2\pi}{n}}) 2cos(2n122πn)2\cos(2\cdot{\textstyle\frac{n-1}{2}}\cdot{\textstyle\frac{2\pi}{n}}) \ldots 2cos(n12n122πn)2\cos({\textstyle\frac{n-1}{2}}\cdot{\textstyle\frac{n-1}{2}}\cdot{\textstyle% \frac{2\pi}{n}}) 0

Problem 49. Write the character table of a group GG as a matrix TT. Use Theorem 8.7 to show that

|det(T)|=con.classesG|G||𝒞|.|\det(T)|=\sqrt{\prod_{\mathrm{con.\,classes}\,{\mathbb{C}}\subseteq G}\frac{|% G|}{|{\mathcal{C}}|}}.

Solution: Consider the matrix

M=(|𝒞||G|χσ(𝒞))σIrr(G),conjugacyclasses𝒞M=\big{(}\sqrt{{\textstyle\frac{|{\mathcal{C}}|}{|G|}}}\chi_{\sigma}({\mathcal% {C}})\big{)}_{\sigma\in\mathrm{Irr}(G),\,\mathrm{conjugacy\;classes\,}{% \mathcal{C}}}

By Theorem 8.7, the matrix MM is unitary, i.e.

MM=Id,MM^{*}={\,\mathrm{Id}},

hence

1=det(MM)=det(M)det(M)=|det(M)|2=|det(M)|.1=\det(MM^{*})=\det(M)\cdot\det(M^{*})=|\det(M)|^{2}=|\det(M)|.

Consider the matrix TT, whose entries are those of the character table. We now note that

T=diag(|G|,|G||𝒞1,|G||𝒞2|,,|G||𝒞n|)M,T=\operatorname{diag}\big{(}\sqrt{|G|},\sqrt{{\textstyle\frac{|G|}{|{\mathcal{% C}}_{1}}}},\sqrt{{\textstyle\frac{|G|}{|{\mathcal{C}}_{2}|}}},\ldots,\sqrt{{% \textstyle\frac{|G|}{|{\mathcal{C}}_{n}|}}}\big{)}M,

hence

|det(T)|=𝒞|G||𝒞|.|\det(T)|=\sqrt{\prod_{{\mathcal{C}}}\frac{|G|}{|{\mathcal{C}}|}}.