Lecture 9

Problem 50. Verify that (cπρ,Hom(V,W))\big{(}c_{\pi}^{\rho},\operatorname{Hom}(V,W)\big{)} is a representation of GG.

Solution: Let THom(V,W)T\in\operatorname{Hom}(V,W). Then for some gGg\in G we have that π(g1)\pi(g^{-1}) and ρ(g)\rho(g) are in GL(V)\operatorname{GL}(V) and GL(W)\operatorname{GL}(W) respectively, so ρ(g)Tπ(g1)\rho(g)T\pi(g^{-1}) is in Hom(V,W)\operatorname{Hom}(V,W). Let gGg\in G be arbitrary, then

cπρ(g)(S+λT)=ρ(g)(S+λT)π(g1)=ρ(g)Sπ(g1)+λρ(g)Tπ(g1)=cπρ(g)(S)+λcπρ(g)(T),c_{\pi}^{\rho}(g)(S+\lambda T)=\rho(g)(S+\lambda T)\pi(g^{-1})=\rho(g)S\pi(g^{% -1})+\lambda\rho(g)T\pi(g^{-1})=c_{\pi}^{\rho}(g)(S)+\lambda c_{\pi}^{\rho}(g)% (T),

for all S,THom(V,W)S,T\in\operatorname{Hom}(V,W) and λ\lambda\in{\mathbb{C}}. Thus cπρ(g)c_{\pi}^{\rho}(g) is linear for each gGg\in G. Also

cπρ(g)cπρ(g1)(T)=ρ(g)ρ(g1)Tπ(g)π(g1)=ρ(gg1)Tπ(gg1)=Tc_{\pi}^{\rho}(g)c_{\pi}^{\rho}(g^{-1})(T)=\rho(g)\rho(g^{-1})T\pi(g)\pi(g^{-1% })=\rho(gg^{-1})T\pi(gg^{-1})=T

for all THom(V,W)T\in\operatorname{Hom}(V,W) so cπρ(g)c_{\pi}^{\rho}(g) is invertible for each gGg\in G. Hence

cπρ:GGL(Hom(V,W)).c_{\pi}^{\rho}:G\longrightarrow\operatorname{GL}(\operatorname{Hom}(V,W)).

Let gg and hh be arbitrary in GG. Then

cπρ(gh)(T)=ρ(gh)Tπ(h1g1)\displaystyle c_{\pi}^{\rho}(gh)(T)=\rho(gh)T\pi(h^{-1}g^{-1}) =ρ(g)ρ(h)Tπ(h1)π(g1)\displaystyle=\rho(g)\rho(h)T\pi(h^{-1})\pi(g^{-1})
=ρ(g)(cπρ(h)(T))π(g1)=cπρ(g)cπρ(h)(T),\displaystyle=\rho(g)\left(c_{\pi}^{\rho}(h)(T)\right)\pi(g^{-1})=c_{\pi}^{% \rho}(g)c_{\pi}^{\rho}(h)(T),

for all THom(V,w)T\in\operatorname{Hom}(V,w). Thus cπρc_{\pi}^{\rho} is a group homomorphism and (cπρ,Hom(V,W))(c_{\pi}^{\rho},\operatorname{Hom}(V,W)) is a representation of GG.

The next few problems give an alternative proof of the orthogonality statement in Theorem 8.7 (actually a slightly stronger result is proved).

Problem 51. Let (π,V)(\pi,V) be a finite-dimensional representation of a group GG. Suppose that VV is equipped with a GG-invariant inner product ,\langle\cdot,\cdot\rangle. Show that

χπ(g)=i=1dimVπ(g)vi,vi,\chi_{\pi}(g)=\sum_{i=1}^{\operatorname{dim}V}\langle\pi(g)v_{i},v_{i}\rangle,

where {vi}i=1,,dim(V)\{v_{i}\}_{i=1,\ldots,\operatorname{dim}(V)} is any orthonormal basis for VV with respect to the invariant inner product.

Remark: A function Φ:G\Phi:G\rightarrow{\mathbb{C}} of the form Φ(g)=π(g)v1,v2\Phi(g)=\langle\pi(g)v_{1},v_{2}\rangle, where v1,v2Vv_{1},v_{2}\in V for some unitary representation (π,V)(\pi,V) of GG is called a matrix coefficient.

Solution:

The result holds more generally. Let A:VVA:V\rightarrow V be any linear operator. Then for any orthonormal basis (w.r.t. ,\langle\cdot,\cdot\rangle) {vi}\{v_{i}\} of VV, the matrix of AA w.r.t. the basis is given by

(Avi,vj)1i,jdimV.\big{(}\langle Av_{i},v_{j}\rangle\big{)}_{1\leq i,j\leq\operatorname{dim}V}.

In particular, each diagonal element is of the form Avi,vi\langle Av_{i},v_{i}\rangle, hence

trA=i=1dimVAvi,vi.\operatorname{tr}A=\sum_{i=1}^{\operatorname{dim}V}\langle Av_{i},v_{i}\rangle.

Problem 52. Let (π,V)(\pi,V) and (ρ,W)(\rho,W) be two representations of a group GG. For THom(V,W)T\in\operatorname{Hom}(V,W), define TGT^{G} by

TG=1|G|gGπ2(g)Tπ1(g1).T^{G}=\frac{1}{|G|}\sum_{g\in G}\pi_{2}(g)T\pi_{1}(g^{-1}).

Show that TGHomG(V,W)T^{G}\in\operatorname{Hom}_{G}(V,W).

Solution: Since TGT^{G} is the linear combination of compositions of linear operators, TGT^{G} is also a linear operator. It remains to show that it intertwines with the GG-actions on VV and WW. We compute: for any gGg\in G,

TGπ1(g)=1|G|hGπ2(h)Tπ1(h1)π1(g)=1|G|hGπ2(h)Tπ1(h1g).\displaystyle T^{G}\pi_{1}(g)=\frac{1}{|G|}\sum_{h\in G}\pi_{2}(h)T\pi_{1}(h^{% -1})\pi_{1}(g)=\frac{1}{|G|}\sum_{h\in G}\pi_{2}(h)T\pi_{1}(h^{-1}g).

We now do the change of variables h1~=h1g\widetilde{h^{-1}}=h^{-1}g, hence h=gh~h=g\widetilde{h}, giving

=1|G|h~Gπ2(gh~)Tπ1(h~)=π2(g)TG.=\frac{1}{|G|}\sum_{\widetilde{h}\in G}\pi_{2}(g\widetilde{h})T\pi_{1}(% \widetilde{h})=\pi_{2}(g)T^{G}.

Problem 53. Show that if (π,V)(\pi,V) and (ρ,W)(\rho,W) are two non-isomorphic irreducible unitary representations of GG, then their matrix coefficients are orthogonal with respect to the standard L2L^{2}-inner product on {\mathbb{C}}-valued functions on GG, i.e.

1|G|gGπ(g)v1,v2Vρ(g)w1,w2W¯=0v1,v2V,w1,w2W.\frac{1}{|G|}\sum_{g\in G}\big{\langle}\pi(g)v_{1},v_{2}\big{\rangle}_{V}% \overline{\big{\langle}\rho(g)w_{1},w_{2}\big{\rangle}_{W}}=0\qquad\forall\,v_% {1},v_{2}\in V,\,w_{1},w_{2}\in W.

Hint: Define the operator THom(V,W)T\in\operatorname{Hom}(V,W) by

T(v)=v,v1Vw1vV.T(v)=\langle v,v_{1}\rangle_{V}w_{1}\qquad\forall v\in V.

Then use Problem 43 and Schur’s lemma to study w2,TGv2W\langle w_{2},T^{G}v_{2}\rangle_{W}.

Solution: Let v1,v2,w1,w2v_{1},v_{2},w_{1},w_{2} be as in the statement of the problem, and define THom(V,W)T\in\operatorname{Hom}(V,W) by T(v)=v,v1Vw1T(v)=\langle v,v_{1}\rangle_{V}w_{1}. By Problem 43, TGHomG(V,W)T^{G}\in\operatorname{Hom}_{G}(V,W), and since (π,V(\pi,V and (ρ,W)(\rho,W) are non-isomorphic, Schur’s lemma gives TG=0T^{G}=0. In particular, TGv2=0T^{G}v_{2}=0, hence

0=w2,TGv2W=1|G|gGw2,ρ(g)T(π(g1)v2)W.0=\langle w_{2},T^{G}v_{2}\rangle_{W}=\frac{1}{|G|}\sum_{g\in G}\langle w_{2},% \rho(g)T(\pi(g^{-1})v_{2})\rangle_{W}. (0.0.1)

Now, by definition and the fact that π1\pi_{1} is unitary,

T(π(g1)v2=π(g1)v2,v1Vw1=v2,π(g)v1Vw1=π(g)v1,v2V¯w1.T(\pi(g^{-1})v_{2}=\langle\pi(g^{-1})v_{2},v_{1}\rangle_{V}w_{1}=\langle v_{2}% ,\pi(g)v_{1}\rangle_{V}w_{1}=\overline{\langle\pi(g)v_{1},v_{2}\rangle_{V}}w_{% 1}.

This gives

ρ(g)T(π(g1)v2)=π(g)v1,v2V¯ρ(g)w1,\rho(g)T(\pi(g^{-1})v_{2})=\overline{\langle\pi(g)v_{1},v_{2}\rangle_{V}}\rho(% g)w_{1},

which, when substituted into (0.0.1), gives

0=1|G|gGw2,π(g)v1,v2V¯ρ(g)w1W=\displaystyle 0=\frac{1}{|G|}\sum_{g\in G}\langle w_{2},\overline{\langle\pi(g% )v_{1},v_{2}\rangle_{V}}\rho(g)w_{1}\rangle_{W}= 1|G|gGπ(g)v1,v2Vw2,ρ(g)w1W\displaystyle\frac{1}{|G|}\sum_{g\in G}\langle\pi(g)v_{1},v_{2}\rangle_{V}% \langle w_{2},\rho(g)w_{1}\rangle_{W}
=1|G|gGπ(g)v1,v2Vρ(g)w1,w2W¯,\displaystyle=\frac{1}{|G|}\sum_{g\in G}\langle\pi(g)v_{1},v_{2}\rangle_{V}% \overline{\langle\rho(g)w_{1},w_{2}\rangle_{W}},

which was what was to be shown.

Problem 54. Let (π,V)(\pi,V) be an irreducible unitary representation of GG. Show that

1|G|gGπ(g)v1,v2Vπ(g)u1,u2V¯=v1,u1Vv2,u2V¯dimVv1,v2,u1,u2V.\frac{1}{|G|}\sum_{g\in G}\big{\langle}\pi(g)v_{1},v_{2}\big{\rangle}_{V}% \overline{\big{\langle}\pi(g)u_{1},u_{2}\big{\rangle}_{V}}=\frac{\langle v_{1}% ,u_{1}\rangle_{V}\overline{\langle v_{2},u_{2}\rangle_{V}}}{\operatorname{dim}% V}\qquad\forall\,v_{1},v_{2},u_{1},u_{2}\in V.

Hint: Define the operator THom(V)T\in\operatorname{Hom}(V) by

T(v)=v,v1Vu1vV.T(v)=\langle v,v_{1}\rangle_{V}u_{1}\qquad\forall v\in V.

Then compute u2,TGv2V\langle u_{2},T^{G}v_{2}\rangle_{V} using Problem 43 and Schur’s lemma (compare with the proof of Proposition 25; show that trTG=trT\operatorname{tr}T^{G}=\operatorname{tr}T).

Solution: Letting u1,u2,v1,v2u_{1},u_{2},v_{1},v_{2} be as stated in the problem, we define

T(v)=v,v1Vu1.T(v)=\langle v,v_{1}\rangle_{V}u_{1}.

By Problem 43 and Schur’s lemma, TG=λIdT^{G}=\lambda{\,\mathrm{Id}}, and so taking the trace of both sides gives trTG=λdimV\operatorname{tr}T^{G}=\lambda\cdot\operatorname{dim}V, i.e. λ=trTGdimV\lambda=\frac{\operatorname{tr}T^{G}}{\operatorname{dim}V}. We now compute trTG\operatorname{tr}T^{G}:

trTG=tr(1|G|gGπ(g)Tπ(g1))=1|G|gGtr(π(g)Tπ(g1))=1|G|gGtrT=trT.\displaystyle\operatorname{tr}T^{G}=\operatorname{tr}\left(\frac{1}{|G|}\sum_{% g\in G}\pi(g)T\pi(g^{-1})\right)=\frac{1}{|G|}\sum_{g\in G}\operatorname{tr}% \big{(}\pi(g)T\pi(g^{-1})\big{)}=\frac{1}{|G|}\sum_{g\in G}\operatorname{tr}T=% \operatorname{tr}T.

Since T=0T=0 on v1v_{1}^{\perp}, we have that

trT=T(v1v1|),v1v1|V=u1,v1V;\operatorname{tr}T=\langle T\big{(}{\textstyle\frac{v_{1}}{\|v_{1}|}}\big{)},{% \textstyle\frac{v_{1}}{\|v_{1}|}}\rangle_{V}=\langle u_{1},v_{1}\rangle_{V};

thus

TG=u1,v1VdimVId.T^{G}=\frac{\langle u_{1},v_{1}\rangle_{V}}{\operatorname{dim}V}{\,\mathrm{Id}}.

This gives

u2,TGv2V=u2,u1,v1VdimVv2V=v1,u1Vu2,v2VdimV=v1,u1Vv2,u2V¯dimV.\langle u_{2},T^{G}v_{2}\rangle_{V}=\left\langle u_{2},{\textstyle\frac{% \langle u_{1},v_{1}\rangle_{V}}{\operatorname{dim}V}}v_{2}\right\rangle_{V}=% \frac{\langle v_{1},u_{1}\rangle_{V}\cdot\langle u_{2},v_{2}\rangle_{V}}{% \operatorname{dim}V}=\frac{\langle v_{1},u_{1}\rangle_{V}\cdot\overline{% \langle v_{2},u_{2}\rangle_{V}}}{\operatorname{dim}V}. (0.0.2)

On the other hand, from the definition of TGT^{G} we obtain

u2,TGv2V=\displaystyle\langle u_{2},T^{G}v_{2}\rangle_{V}= 1|G|gGu2,π(g)Tπ(g1)v2V=1|G|gGu2,π(g)π(g1)v2,v1Vu1V\displaystyle\frac{1}{|G|}\sum_{g\in G}\langle u_{2},\pi(g)T\pi(g^{-1})v_{2}% \rangle_{V}=\frac{1}{|G|}\sum_{g\in G}\langle u_{2},\pi(g)\langle\pi(g^{-1})v_% {2},v_{1}\rangle_{V}u_{1}\rangle_{V} (0.0.3)
=1|G|gGu2,π(g)π(g1)v2,v1Vu1V=1|G|gGv1,π(g1)v2Vu2,π(g)u1V\displaystyle=\frac{1}{|G|}\sum_{g\in G}\langle u_{2},\pi(g)\langle\pi(g^{-1})% v_{2},v_{1}\rangle_{V}u_{1}\rangle_{V}=\frac{1}{|G|}\sum_{g\in G}\langle v_{1}% ,\pi(g^{-1})v_{2}\rangle_{V}\langle u_{2},\pi(g)u_{1}\rangle_{V}
=1|G|gGπ(g)v1,v2Vπ(g)u1,u2V¯.\displaystyle=\frac{1}{|G|}\sum_{g\in G}\langle\pi(g)v_{1},v_{2}\rangle_{V}% \overline{\langle\pi(g)u_{1},u_{2}\rangle_{V}}.

Equating (0.0.2) and (0.0.3) gives

1|G|gGπ(g)v1,v2Vπ(g)u1,u2V¯=v1,u1Vv2,u2V¯dimV,\frac{1}{|G|}\sum_{g\in G}\langle\pi(g)v_{1},v_{2}\rangle_{V}\overline{\langle% \pi(g)u_{1},u_{2}\rangle_{V}}=\frac{\langle v_{1},u_{1}\rangle_{V}\cdot% \overline{\langle v_{2},u_{2}\rangle_{V}}}{\operatorname{dim}V},

as desired.

Problem 55. Use Problems 51 to 54 to give an alternative proof of the fact that the characters of irreducible representations form an orthonormal set in CF(G)CF(G).

Solution: Let (π,V)≇(ρ,U)(\pi,V)\not\cong(\rho,U) be two irreducible representations of GG. By Problems 51 and 52, we may assume that these are both unitary representations. Let {vi}\{v_{i}\} be an orthonormal basis of VV and {uj}\{u_{j}\} an orthonormal basis of UU. By Problem 51,

χπ(g)=iπ(g)vi,viV,χρ(g)=jρ(g)uj,ujU.\chi_{\pi}(g)=\sum_{i}\langle\pi(g)v_{i},v_{i}\rangle_{V},\qquad\chi_{\rho}(g)% =\sum_{j}\langle\rho(g)u_{j},u_{j}\rangle_{U}.

Then

χπ,χρG=i,jπ()vi,viV,ρ()uj,ujUG.\langle\chi_{\pi},\chi_{\rho}\rangle_{G}=\sum_{i,j}\bigg{\langle}\langle\pi(% \cdot)v_{i},v_{i}\rangle_{V},\langle\rho(\cdot)u_{j},u_{j}\rangle_{U}\bigg{% \rangle}_{G}.

By Problem 53,

π()vi,viV,ρ()uj,ujUG=1|G|gGπ(g)vi,viVρ(g)uj,ujU¯=0,\bigg{\langle}\langle\pi(\cdot)v_{i},v_{i}\rangle_{V},\langle\rho(\cdot)u_{j},% u_{j}\rangle_{U}\bigg{\rangle}_{G}=\frac{1}{|G|}\sum_{g\in G}\langle\pi(g)v_{i% },v_{i}\rangle_{V}\overline{\langle\rho(g)u_{j},u_{j}\rangle_{U}}=0,

hence χπ,χρG=0\langle\chi_{\pi},\chi_{\rho}\rangle_{G}=0.

On the other hand, by Problems 51 and 54, we have

χπ,χπG=i,jπ()vi,viV,π()vj,vjVG=i,j1|G|gGπ(g)vi,viVπ(g)vj,vjV¯\displaystyle\langle\chi_{\pi},\chi_{\pi}\rangle_{G}=\sum_{i,j}\bigg{\langle}% \langle\pi(\cdot)v_{i},v_{i}\rangle_{V},\langle\pi(\cdot)v_{j},v_{j}\rangle_{V% }\bigg{\rangle}_{G}=\sum_{i,j}\frac{1}{|G|}\sum_{g\in G}\langle\pi(g)v_{i},v_{% i}\rangle_{V}\overline{\langle\pi(g)v_{j},v_{j}\rangle_{V}}
=i,jvi,vjVvi,vjV¯dimV.\displaystyle=\sum_{i,j}\frac{\langle v_{i},v_{j}\rangle_{V}\cdot\overline{% \langle v_{i},v_{j}\rangle_{V}}}{\operatorname{dim}V}.

Since {vi}\{v_{i}\} is an orthonormal basis of VV, vi,vjVvi,vjV¯=1\langle v_{i},v_{j}\rangle_{V}\cdot\overline{\langle v_{i},v_{j}\rangle_{V}}=1 if j=ij=i and zero otherwise, hence

χπ,χπG=ijvi,vjVvi,vjV¯dimV=i1dimV=1.\langle\chi_{\pi},\chi_{\pi}\rangle_{G}=\sum_{i}\frac{\sum_{j}\langle v_{i},v_% {j}\rangle_{V}\cdot\overline{\langle v_{i},v_{j}\rangle_{V}}}{\operatorname{% dim}V}=\sum_{i}\frac{1}{\operatorname{dim}V}=1.

Problem 56. For each (σ,Wσ)Irr(G)(\sigma,W_{\sigma})\in\mathrm{Irr}(G), let {wσ,i}i=1,,dimσ\{w_{\sigma,i}\}_{i=1,\ldots,\operatorname{dim}\sigma} be an orthonormal basis of WσW_{\sigma} with respect to an invariant inner product ,Wσ\langle\cdot,\cdot\rangle_{W_{\sigma}}. Show that {Φσ,i,j}σIrr(G),1i,jdimσ\{\Phi_{\sigma,i,j}\}_{\sigma\in\mathrm{Irr}(G),1\leq i,j\leq\operatorname{dim% }\sigma} is an orthonormal basis of V={f:G}V=\{f:G\rightarrow{\mathbb{C}}\} with respect to the inner product f1,f2G=1|G|gGf1(g)f2(g)¯\langle f_{1},f_{2}\rangle_{G}=\frac{1}{|G|}\sum_{g\in G}f_{1}(g)\overline{f_{% 2}(g)}, where

Φσ,i,j(g):=dimσσ(g)wσ,i,wσ,jWσ.\Phi_{\sigma,i,j}(g):=\sqrt{\operatorname{dim}\sigma}\langle\sigma(g)w_{\sigma% ,i},w_{\sigma,j}\rangle_{W_{\sigma}}.

Solution: By Problem 53,

Φσ,i,j,Φσ,i,jG=0\langle\Phi_{\sigma,i,j},\Phi_{\sigma^{\prime},i^{\prime},j^{\prime}}\rangle_{% G}=0

if σσ\sigma\neq\sigma^{\prime}. On the other hand, by Problem 54,

Φσ,i,j,Φσ,i,jG=σσwσ,i,wσ,iWσwσ,j,wσ,jWσ¯dimσ.\langle\Phi_{\sigma,i,j},\Phi_{\sigma,i^{\prime},j^{\prime}}\rangle_{G}=\frac{% \sqrt{\sigma}\cdot\sqrt{\sigma}\cdot\langle w_{\sigma,i},w_{\sigma,i^{\prime}}% \rangle_{W_{\sigma}}\cdot\overline{\langle w_{\sigma,j},w_{\sigma,j^{\prime}}% \rangle_{W_{\sigma}}}}{\operatorname{dim}\sigma}.

Since {wσ,i}i\{w_{\sigma,i}\}_{i} is an orthonormal basis of WσW_{\sigma}, we then have

Φσ,i,j,Φσ,i,jG={1if(i,j)=(i,j)0otherwise.\langle\Phi_{\sigma,i,j},\Phi_{\sigma,i^{\prime},j^{\prime}}\rangle_{G}=\begin% {cases}1\quad&\mathrm{if\;}(i,j)=(i^{\prime},j^{\prime})\\ 0\quad&\mathrm{otherwise}.\end{cases}

The set {Φσ,i,j}\{\Phi_{\sigma,i,j}\} is thus an orthonormal set in VV, and therefore forms a basis of span{Φσ,i,j}\mathrm{span}\{\Phi_{\sigma,i,j}\}. Using Theorem 6.6, we get

dim(span{Φσ,i,j})=#{Φσ,i,j}=σIrr(G)(dimσ)2=|G|=dimV,\operatorname{dim}(\mathrm{span}\{\Phi_{\sigma,i,j}\})=\#\{\Phi_{\sigma,i,j}\}% =\sum_{\sigma\in\mathrm{Irr}(G)}(\operatorname{dim}\sigma)^{2}=|G|=% \operatorname{dim}V,

giving V=span{Φσ,i,j}V=\mathrm{span}\{\Phi_{\sigma,i,j}\}.

Problem 57. (Challenging!) For each (σ,Wσ)Irr(G)(\sigma,W_{\sigma})\in\mathrm{Irr}(G) and fV={f:G}f\in V=\{f:G\rightarrow{\mathbb{C}}\}, define f^(σ)Hom(Wσ)\widehat{f}(\sigma)\in\operatorname{Hom}(W_{\sigma}) by

f^(σ)=1|G|gGf(g)σ(g1).\widehat{f}(\sigma)=\frac{1}{|G|}\sum_{g\in G}f(g)\sigma(g^{-1}).
  1. (a)

    Show that ff^(σ)f\mapsto\widehat{f}(\sigma) is an intertwining operator between (ρ,V)(\rho,V), and (σ~,Hom(Wσ))\big{(}\widetilde{\sigma},\operatorname{Hom}(W_{\sigma})\big{)}, where (ρ(g)f)(h)=f(hg)(\rho(g)f)(h)=f(hg), hG\forall h\in G, and σ(g)~(T)=σ(g)T\widetilde{\sigma(g)}(T)=\sigma(g)T for all THom(Wσ)T\in\operatorname{Hom}(W_{\sigma}).

  2. (b)

    Show the Plancherel identity

    f1,f2G=σIrr(G)dimσtr(f1^(σ)f2^(σ)),\langle f_{1},f_{2}\rangle_{G}=\sum_{\sigma\in\mathrm{Irr}(G)}\operatorname{% dim}\sigma\,\operatorname{tr}\big{(}\widehat{f_{1}}(\sigma)\widehat{f_{2}}(% \sigma)^{*}\big{)},

    and use it to deduce the Fourier inversion formula

    f(g)=σIrr(G)dimσtr(f^(σ)σ(g)).f(g)=\sum_{\sigma\in\mathrm{Irr}(G)}\operatorname{dim}\sigma\,\operatorname{tr% }\big{(}\widehat{f}(\sigma)\sigma(g)\big{)}.

Solution:

  1. (a)

    Since f^\widehat{f} is a linear combination of elements of Hom(Wσ)\operatorname{Hom}(W_{\sigma}), it must also be an element of Hom(Wσ)\operatorname{Hom}(W_{\sigma}). It remains to show that ff^f\mapsto\widehat{f} intertwines with the GG-actions on VV and Hom(Wσ)\operatorname{Hom}(W_{\sigma}). Given gGg\in G, and fVf\in V, we have

    ρ(g)f^=\displaystyle\widehat{\rho(g)f}= 1|G|hG[ρ(g)f](h)σ(h1)=1|G|hGf(hg)σ(h1)=(h=hg)1|G|hGf(h)σ((hg1)1)\displaystyle\frac{1}{|G|}\sum_{h\in G}[\rho(g)f](h)\sigma(h^{-1})=\frac{1}{|G% |}\sum_{h\in G}f(hg)\sigma(h^{-1})\underset{(h^{\prime}=hg)}{=}\frac{1}{|G|}% \sum_{h^{\prime}\in G}f(h^{\prime})\sigma\big{(}(h^{\prime}g^{-1})^{-1}\big{)}
    =1|G|hGf(h)σ(gh1)=σ(g)(1|G|hGf(h)σ(h1))=σ~(g)f^(σ),\displaystyle=\frac{1}{|G|}\sum_{h\in G}f(h)\sigma(gh^{-1})=\sigma(g)\left(% \frac{1}{|G|}\sum_{h\in G}f(h)\sigma(h^{-1})\right)=\widetilde{\sigma}(g)% \widehat{f}(\sigma),

    as desired.

  2. (b)

    For each σIrr(G)\sigma\in\mathrm{Irr}(G), let ,Wσ\langle\cdot,\cdot\rangle_{W_{\sigma}} be a GG-invariant inner product on WσW_{\sigma} as in Problems 42-46, and let {Φσ,i,j}σ,i,j\{\Phi_{\sigma,i,j}\}_{\sigma,i,j} be the orthonormal basis of VV as before. Then for each fVf\in V,

    f=σ,i,jf,Φσ,i,jG.f=\sum_{\sigma,i,j}\langle f,\Phi_{\sigma,i,j}\rangle_{G}.

    Then

    f1,f2G=σ,i,jf1,Φσ,i,jGf2,Φσ,i,jG¯=σIrr(G)dim(σ)i,jf1,Φσ,i,jGf2,Φσ,i,jG¯dim(σ),\displaystyle\langle f_{1},f_{2}\rangle_{G}=\sum_{\sigma,i,j}\langle f_{1},% \Phi_{\sigma,i,j}\rangle_{G}\overline{\langle f_{2},\Phi_{\sigma,i,j}\rangle_{% G}}=\sum_{\sigma\in\mathrm{Irr}(G)}\operatorname{dim}(\sigma)\sum_{i,j}\frac{% \langle f_{1},\Phi_{\sigma,i,j}\rangle_{G}\overline{\langle f_{2},\Phi_{\sigma% ,i,j}\rangle_{G}}}{\operatorname{dim}(\sigma)},

    so it remains to show that

    tr(f1^(σ)f2^(σ))=i,jf1,Φσ,i,jGf2,Φσ,i,jG¯dim(σ).\operatorname{tr}\big{(}\widehat{f_{1}}(\sigma)\widehat{f_{2}}(\sigma)^{*}\big% {)}=\sum_{i,j}\frac{\langle f_{1},\Phi_{\sigma,i,j}\rangle_{G}\overline{% \langle f_{2},\Phi_{\sigma,i,j}\rangle_{G}}}{\operatorname{dim}(\sigma)}.

    Recall that if A:WσWσA:W_{\sigma}\rightarrow W_{\sigma} is a linear operator, A:WσWσA^{*}:W_{\sigma}\rightarrow W_{\sigma} is defined through the formula Aw1,w2Wσ=w1,Aw2Wσ.\langle A^{*}w_{1},w_{2}\rangle_{W_{\sigma}}=\langle w_{1},Aw_{2}\rangle_{W_{% \sigma}}. Using that tr(AB)=tr(BA)\mathrm{tr}(AB)=\mathrm{tr}(BA), we have

    tr(f1^(σ)f2^(σ))=tr(f2^(σ)f1^(σ))=if2^(σ)f1^(σ)wσ,i,wσ,iWσ\displaystyle\mathrm{tr}\big{(}\widehat{f_{1}}(\sigma)\widehat{f_{2}}(\sigma)^% {*}\big{)}=\mathrm{tr}\big{(}\widehat{f_{2}}(\sigma)^{*}\widehat{f_{1}}(\sigma% )\big{)}=\sum_{i}\langle\widehat{f_{2}}(\sigma)^{*}\widehat{f_{1}}(\sigma)w_{% \sigma,i},w_{\sigma,i}\rangle_{W_{\sigma}}
    =\displaystyle= if1^(σ)wσ,i,f2^(σ)wσ,iWσ=i|G|2g,hGf1(g)f2(h)¯σ(g1)wσ,i,σ(h1)wσ,iWσ\displaystyle\sum_{i}\langle\widehat{f_{1}}(\sigma)w_{\sigma,i},\widehat{f_{2}% }(\sigma)w_{\sigma,i}\rangle_{W_{\sigma}}=\sum_{i}|G|^{-2}\sum_{g,h\in G}f_{1}% (g)\overline{f_{2}(h)}\langle\sigma(g^{-1})w_{\sigma,i},\sigma(h^{-1})w_{% \sigma,i}\rangle_{W_{\sigma}}
    =i|G|2g,hGf1(g)f2(h)¯σ(hg1)wσ,i,wσ,iWσ=i|G|2g,hGf1(g)f2(h)¯Φσ,i,i(hg1).\displaystyle=\sum_{i}|G|^{-2}\sum_{g,h\in G}f_{1}(g)\overline{f_{2}(h)}% \langle\sigma(hg^{-1})w_{\sigma,i},w_{\sigma,i}\rangle_{W_{\sigma}}=\sum_{i}|G% |^{-2}\sum_{g,h\in G}f_{1}(g)\overline{f_{2}(h)}\Phi_{\sigma,i,i}(hg^{-1}).

    We now expand f1,f2f_{1},f_{2} in terms of the matrix coefficients Φ\Phi:

    f1(g)=σ,j,kf1,Φσ,j,kGΦσ,j,k(g),f2(h)¯=σ′′,j′′,k′′f2,Φσ′′,j′′,k′′G¯Φσ′′,j′′,k′′(h)¯.f_{1}(g)=\sum_{\sigma^{\prime},j^{\prime},k^{\prime}}\langle f_{1},\Phi_{% \sigma^{\prime},j^{\prime},k^{\prime}}\rangle_{G}\Phi_{\sigma^{\prime},j^{% \prime},k^{\prime}}(g),\qquad\overline{f_{2}(h)}=\sum_{\sigma^{\prime\prime},j% ^{\prime\prime},k^{\prime\prime}}\overline{\langle f_{2},\Phi_{\sigma^{\prime% \prime},j^{\prime\prime},k^{\prime\prime}}\rangle_{G}}\cdot\overline{\Phi_{% \sigma^{\prime\prime},j^{\prime\prime},k^{\prime\prime}}(h)}.

    This gives

    tr(f1^(σ)f2^(σ))=\displaystyle\mathrm{tr}\big{(}\widehat{f_{1}}(\sigma)\widehat{f_{2}}(\sigma)^% {*}\big{)}= σ,σ′′,j,j′′,k,k′′f1,Φσ,j,kGf2,Φσ′′,j′′,k′′G¯\displaystyle\sum_{\sigma^{\prime},\sigma^{\prime\prime},j^{\prime},j^{\prime% \prime},k^{\prime},k^{\prime\prime}}\langle f_{1},\Phi_{\sigma^{\prime},j^{% \prime},k^{\prime}}\rangle_{G}\overline{\langle f_{2},\Phi_{\sigma^{\prime% \prime},j^{\prime\prime},k^{\prime\prime}}\rangle_{G}}
    ×i|G|2g,hΦσ,j,k(g)Φσ′′,j′′,k′′(h)¯Φσ,i,i(hg1).\displaystyle\qquad\qquad\times\sum_{i}|G|^{-2}\sum_{g,h}\Phi_{\sigma^{\prime}% ,j^{\prime},k^{\prime}}(g)\overline{\Phi_{\sigma^{\prime\prime},j^{\prime% \prime},k^{\prime\prime}}(h)}\Phi_{\sigma,i,i}(hg^{-1}).

    Starting with the inner sum, by Problems 44 and 45, we have

    1|G|hGΦσ′′,j′′,k′′(h)¯Φσ,i,i(hg1)=\displaystyle\frac{1}{|G|}\sum_{h\in G}\overline{\Phi_{\sigma^{\prime\prime},j% ^{\prime\prime},k^{\prime\prime}}(h)}\Phi_{\sigma,i,i}(hg^{-1})= 1|G|hGσ(h)σ(g1)wσ,i,wσ,iWσσ′′(h)wσ′′,j′′,wσ′′,k′′Wσ′′¯\displaystyle\frac{1}{|G|}\sum_{h\in G}\langle\sigma(h)\sigma(g^{-1})w_{\sigma% ,i},w_{\sigma,i}\rangle_{W_{\sigma}}\overline{\langle\sigma^{\prime\prime}(h)w% _{\sigma^{\prime\prime},j^{\prime\prime}},w_{\sigma^{\prime\prime},k^{\prime% \prime}}\rangle_{W_{\sigma^{\prime\prime}}}}
    ={0ifσ′′σΦσ,i,j′′(g1)wσ,i,wσ,k′′Wσ¯dimσifσ′′=σ.\displaystyle=\begin{cases}0\quad&\mathrm{if\;}\sigma^{\prime\prime}\neq\sigma% \\ \frac{\Phi_{\sigma,i,j^{\prime\prime}}(g^{-1})\overline{\langle w_{\sigma,i},w% _{\sigma,k^{\prime\prime}}\rangle_{W_{\sigma}}}}{\operatorname{dim}\sigma}&% \mathrm{if\;}\sigma^{\prime\prime}=\sigma.\end{cases}

    Since wσ,i,wσ,k′′Wσ=0\langle w_{\sigma,i},w_{\sigma,k^{\prime\prime}}\rangle_{W_{\sigma}}=0 if k′′ik^{\prime\prime}\neq i and one if k′′=ik^{\prime\prime}=i, we now have

    tr(f1^(σ)f2^(σ))=\displaystyle\mathrm{tr}\big{(}\widehat{f_{1}}(\sigma)\widehat{f_{2}}(\sigma)^% {*}\big{)}= 1dimσσ,j,j′′,k,if1,Φσ,j,kGf2,Φσ,j′′,iG¯×|G|1gGΦσ,j,k(g)Φσ,i,j′′(g1)\displaystyle\frac{1}{\operatorname{dim}\sigma}\sum_{\sigma^{\prime},j^{\prime% },j^{\prime\prime},k^{\prime},i}\langle f_{1},\Phi_{\sigma^{\prime},j^{\prime}% ,k^{\prime}}\rangle_{G}\overline{\langle f_{2},\Phi_{\sigma,j^{\prime\prime},i% }\rangle_{G}}\times|G|^{-1}\sum_{g\in G}\Phi_{\sigma^{\prime},j^{\prime},k^{% \prime}}(g)\Phi_{\sigma,i,j^{\prime\prime}}(g^{-1})

    Again using Problems 44 and 45, we have

    |G|1gGΦσ,j,k(g)Φσ,i,j′′(g1)\displaystyle|G|^{-1}\sum_{g\in G}\Phi_{\sigma^{\prime},j^{\prime},k^{\prime}}% (g)\Phi_{\sigma,i,j^{\prime\prime}}(g^{-1}) =|G|1gGΦσ,j,k(g)Φσ,j′′,i(g)¯\displaystyle=|G|^{-1}\sum_{g\in G}\Phi_{\sigma^{\prime},j^{\prime},k^{\prime}% }(g)\overline{\Phi_{\sigma,j^{\prime\prime},i}(g)}
    =\displaystyle= Φσ,j,k,Φσ,j′′,iG={1if(σ,j,k)=(σ,j′′,i)0otherwise.\displaystyle\langle\Phi_{\sigma^{\prime},j^{\prime},k^{\prime}},\Phi_{\sigma,% j^{\prime\prime},i}\rangle_{G}=\begin{cases}1\quad&\mathrm{if\;}(\sigma^{% \prime},j^{\prime},k^{\prime})=(\sigma,j^{\prime\prime},i)\\ 0\quad&\mathrm{otherwise.}\end{cases}

    Entering this into the previous expression of tr(f1^(σ)f2^(σ))\mathrm{tr}\big{(}\widehat{f_{1}}(\sigma)\widehat{f_{2}}(\sigma)^{*}\big{)} gives

    tr(f1^(σ)f2^(σ))=1dimσj,if1,Φσ,j,iGf2,Φσ,j,iG¯,\mathrm{tr}\big{(}\widehat{f_{1}}(\sigma)\widehat{f_{2}}(\sigma)^{*}\big{)}=% \frac{1}{\operatorname{dim}\sigma}\sum_{j^{\prime},i}\langle f_{1},\Phi_{% \sigma,j^{\prime},i}\rangle_{G}\overline{\langle f_{2},\Phi_{\sigma,j^{\prime}% ,i}\rangle_{G}},

    as desired.

    We now show the inversion formula using the Plancherel formula: let 𝟏g:G\mathbf{1}_{g}:G\rightarrow{\mathbb{C}} be the delta function at gg, i.e. 𝟏g(h)=1\mathbf{1}_{g}(h)=1 if h=gh=g and zero otherwise. Then

    f(g)=|G|f,𝟏gG=|G|σIrr(G)dimσtr(f^(σ)𝟏g^(σ))f(g)=|G|\langle f,\mathbf{1}_{g}\rangle_{G}=|G|\sum_{\sigma\in\mathrm{Irr}(G)}% \operatorname{dim}\sigma\,\operatorname{tr}\big{(}\widehat{f}(\sigma)\widehat{% \mathbf{1}_{g}}(\sigma)^{*}\big{)}

    From the definition of 𝟏g^(σ)\widehat{\mathbf{1}_{g}}(\sigma)^{*}:

    𝟏g^(σ)=1|G|hG𝟏g(h)σ(h)=1|G|σ(g),\widehat{\mathbf{1}_{g}}(\sigma)^{*}=\frac{1}{|G|}\sum_{h\in G}\mathbf{1}_{g}(% h)\sigma(h)=\frac{1}{|G|}\sigma(g),

    hence

    f(g)=|G|σIrr(G)dimσtr(f^(σ)1|G|σ(g))=σIrr(G)dimσtr(f^(σ)σ(g)).f(g)=|G|\sum_{\sigma\in\mathrm{Irr}(G)}\operatorname{dim}\sigma\,\operatorname% {tr}\big{(}\widehat{f}(\sigma)\frac{1}{|G|}\sigma(g)\big{)}=\sum_{\sigma\in% \mathrm{Irr}(G)}\operatorname{dim}\sigma\,\operatorname{tr}\big{(}\widehat{f}(% \sigma)\sigma(g)\big{)}.