Lecture 17

Problem 89. Decompose (π,(3,2))(\pi,{\mathcal{M}}^{(3,2)}) into irreducible representations of S5S_{5}.

Solution: We first note that by (17.7), (3,2){\mathcal{M}}^{(3,2)} has dimension 1010 with basis

\ytableausetuptabloids,smalltableaux\ytableaushort123,45,\ytableaushort124,35,\ytableaushort125,34,\ytableaushort134,25,\ytableaushort135,24,\ytableaushort145,23,\ytableaushort234,15,\ytableaushort235,14,\ytableaushort245,13,\ytableaushort345,12.\ytableausetup{tabloids,smalltableaux}\ytableaushort{123,45},\quad% \ytableaushort{124,35},\quad\ytableaushort{125,34},\quad\ytableaushort{134,25}% ,\quad\ytableaushort{135,24},\quad\ytableaushort{145,23},\quad\ytableaushort{2% 34,15},\quad\ytableaushort{235,14},\quad\ytableaushort{245,13},\quad% \ytableaushort{345,12}.

We then compute how many elements of the basis a representative of each conjugacy class fixes to find the character values of χπ\chi_{\pi}. These are:

e(12)(12)(34)(123)(123)(45)(1234)(12345)χπ10411100\begin{array}[h]{c|rrrrrrr}&e&(12)&(12)(34)&(123)&(123)(45)&(1234)&(12345)\\ \hline\cr\chi_{\pi}&10&4&1&1&1&0&0\end{array}

We already know that the trivial representation is a subrepresentation of π\pi, the sum of all tabloids is invariant under the action of S5S_{5}, so we can consider the character of the resulting quotient representation. By Problem 66(b) this is

e(12)(12)(34)(123)(123)(45)(1234)(12345)χπtriv9300011\begin{array}[h]{c|rrrrrrr}&e&(12)&(12)(34)&(123)&(123)(45)&(1234)&(12345)\\ \hline\cr\chi_{\pi}-\mathrm{triv}&9&3&0&0&0&-1&-1\end{array}

Now it is just a case of inspecting the character table of S5S_{5}, see Section 12.2, and determining which sum of irreducible characters gives the above values. Thus

π=trivπρ,\pi=\mathrm{triv}\oplus\pi^{\prime}\oplus\rho,

where π\pi^{\prime} is the representation labelled π\pi in the character table in Section 12.2. We note that this is unique, up to reordering, by Theorem 5.12.

Problem 90. Show that (π,𝒮(n))(\pi,{\mathcal{S}}^{(n)}) is the trivial representation of SnS_{n} and that (π,𝒮(1,,1))(\pi,{\mathcal{S}}^{(1,\ldots,1)}) is the sign representation.

Solution: There is only one tabloid of shape (n)(n), \ytableausetuptabloids,smalltableaux\ytableaushort1n\ytableausetup{tabloids,smalltableaux}\ytableaushort{1\ldots n}, so (π,(n))(\pi,{\mathcal{M}}^{(n)}) is irreducible thus (π,(n))=(π,𝒮(n))(\pi,{\mathcal{M}}^{(n)})=(\pi,{\mathcal{S}}^{(n)}). Each element of SnS_{n} acts as the identity on \ytableausetuptabloids,smalltableaux\ytableaushort1n\ytableausetup{tabloids,smalltableaux}\ytableaushort{1\ldots n} so this is the trivial representation.

Now note that for any tableau tt of shape (1,,1)(1,\ldots,1) we have C(t)=SnC(t)=S_{n}. Let tt be the standard tableau (11 to nn in order going top to bottom), then

𝐞t=σSnsgn(σ)σ\ytableausetupnotabloids,smalltableaux\ytableaushort1,,,,n.{\bf e}_{t}=\sum_{\sigma\in S_{n}}\mathrm{sgn}(\sigma)\sigma\cdot% \ytableausetup{notabloids,smalltableaux}\ytableaushort{1,\cdot,\cdot,\cdot,n}.

Note that for any other tableaux tt^{\prime} of the same shape we have 𝐞t=±𝐞t{\bf e}_{t^{\prime}}=\pm{\bf e}_{t}, where sign is positive if tt^{\prime} differs from tt by an even permutation and negative if they differ by an odd permutation. Thus (π,𝒮(n))(\pi,{\mathcal{S}}^{(n)}) is 11-dimensional. Pick 𝐞t{\bf e}_{t} to be our basis element, where tt is the standard tableau, and we have that even permutations fix 𝐞t{\bf e}_{t} and odd ones send it to 𝐞t-{\bf e}_{t}. Thus we have the sign representation.

Problem 91. Show that (π,(n1,1))(\pi,{\mathcal{M}}^{(n-1,1)}) is isomorphic to the standard permutation representation of SnS_{n} on n{\mathbb{C}}^{n} and that (π,𝒮(n1,1))(\pi,{\mathcal{S}}^{(n-1,1)}) is isomorphic to the usual irreducible n1n-1-dimensional subrepresentation W0W_{0} of n{\mathbb{C}}^{n}.

Solution: Let ϕ:n𝐘𝐓𝐃(n1,1)\phi:{\mathbb{C}}^{n}\rightarrow\mathbf{YTD}^{(n-1,1)} be given by the linear extension of

\ytableausetuptabloids,smalltableaux𝐞i\ytableaushort,i,\ytableausetup{tabloids,smalltableaux}{\bf e}_{i}\longmapsto\ytableaushort{% \cdots\cdots\cdots\cdots,i},

for each 1in1\leq i\leq n. Then as it sends one basis to another it is a bijection and thus ϕ\phi is an isomorphism of vector spaces. Next we note that elements of the form (jk)(jk) generate SnS_{n} so we just need to consider the action of these on each basis. We now consider the two cases, ii is permuted or it is not. If jikj\neq i\neq k then

ϕ((jk)𝐞i)=ϕ(𝐞i)=\ytableaushort,i=(jk)\ytableaushort,i=(jk)ϕ(𝐞i).\phi((jk)\cdot{\bf e}_{i})=\phi({\bf e}_{i})=\ytableaushort{\cdots\cdots\cdots% \cdots,i}=(jk)\cdot\ytableaushort{\cdots\cdots\cdots\cdots,i}=(jk)\cdot\phi({% \bf e}_{i}).

Suppose now, without loss of generality that i=ki=k, then

ϕ((ij)𝐞i)=ϕ(𝐞j)=\ytableaushort,j=(ij)\ytableaushort,i=(ij)ϕ(𝐞i).\phi((ij)\cdot{\bf e}_{i})=\phi({\bf e}_{j})=\ytableaushort{\cdots\cdots\cdots% \cdots,j}=(ij)\cdot\ytableaushort{\cdots\cdots\cdots\cdots,i}=(ij)\cdot\phi({% \bf e}_{i}).

Thus ϕ\phi is an isomorphism and (π,(n1,1))(\pi,{\mathcal{M}}^{(n-1,1)}) and (π,n)(\pi,{\mathbb{C}}^{n}) are isomorphic.

By Theorem 5.12 these two representations must have isomorphic irreducible subrepresentations. (π,(n1,1))(\pi,{\mathcal{M}}^{(n-1,1)}) contains a copy of the trivial representation, generated by the sum of all tabloids, and so does the permutation representation. The remaining irreducible subrepresentation of the permutation representation is (π,W0)(\pi,W_{0}) which therefore must be isomorphic to (π,𝒮(n1,1))(\pi,{\mathcal{S}}^{(n-1,1)}), which by Theorem 17.11 is also irreducible.

Problem 92. Show that (π,λ)(\pi,{\mathcal{M}}^{\lambda}) is a unitary representation of SnS_{n} with respect to the inner product

[t]𝐘𝐓𝐃λz[t][t],[s]𝐘𝐓𝐃λw[s][s]λ:=[t]𝐘𝐓𝐃λz[t]w[t]¯.\left\langle\sum_{[t]\in\mathbf{YTD}^{\lambda}}z_{[t]}[t],\sum_{[s]\in\mathbf{% YTD}^{\lambda}}w_{[s]}[s]\right\rangle_{\lambda}:=\sum_{[t]\in\mathbf{YTD}^{% \lambda}}z_{[t]}\overline{w_{[t]}}.

Solution: We note that for any σSn\sigma\in S_{n} we have that σ[t]=[σt]\sigma\cdot[t]=[\sigma\cdot t] is another tabloid. Thus

σ([t]𝐘𝐓𝐃λz[t][t])=[t]𝐘𝐓𝐃λz[t][σt]=[t]𝐘𝐓𝐃λz[t][σt]=[t]𝐘𝐓𝐃λz[σ1t][t].\sigma\cdot\left(\sum_{[t]\in\mathbf{YTD}^{\lambda}}z_{[t]}[t]\right)=\sum_{[t% ]\in\mathbf{YTD}^{\lambda}}z_{[t]}[\sigma\cdot t]=\sum_{[t]\in\mathbf{YTD}^{% \lambda}}z_{[t]}[\sigma\cdot t]=\sum_{[t]\in\mathbf{YTD}^{\lambda}}z_{[\sigma^% {-1}\cdot t]}[t].

Crucially, the coefficients are not changed, just permuted. We therefore have

σ([t]𝐘𝐓𝐃λz[t][t]),σ([s]𝐘𝐓𝐃λw[s][s])λ\displaystyle\left\langle\sigma\cdot\left(\sum_{[t]\in\mathbf{YTD}^{\lambda}}z% _{[t]}[t]\right),\sigma\cdot\left(\sum_{[s]\in\mathbf{YTD}^{\lambda}}w_{[s]}[s% ]\right)\right\rangle_{\lambda} =[t]𝐘𝐓𝐃λz[σ1t][t],[s]𝐘𝐓𝐃λw[σ1s][s]λ\displaystyle=\left\langle\sum_{[t]\in\mathbf{YTD}^{\lambda}}z_{[\sigma^{-1}% \cdot t]}[t],\sum_{[s]\in\mathbf{YTD}^{\lambda}}w_{[\sigma^{-1}\cdot s]}[s]% \right\rangle_{\lambda}
=[t]𝐘𝐓𝐃λz[σ1t]w[σ1t]¯\displaystyle=\sum_{[t]\in\mathbf{YTD}^{\lambda}}z_{[\sigma^{-1}\cdot t]}% \overline{w_{[\sigma^{-1}\cdot t]}}
=[t]𝐘𝐓𝐃λz[t]w[t]¯\displaystyle=\sum_{[t]\in\mathbf{YTD}^{\lambda}}z_{[t]}\overline{w_{[t]}}
=[t]𝐘𝐓𝐃λz[t][t],[s]𝐘𝐓𝐃λw[s][s]λ.\displaystyle=\left\langle\sum_{[t]\in\mathbf{YTD}^{\lambda}}z_{[t]}[t],\sum_{% [s]\in\mathbf{YTD}^{\lambda}}w_{[s]}[s]\right\rangle_{\lambda}.

As σ\sigma was arbitrary the inner product is invariant with respect to the action of SnS_{n} and thus (π,λ)(\pi,{\mathcal{M}}^{\lambda}) is unitary.