Lecture 16

Problem 86. Let χσ\chi_{\sigma} be the irreducible degree 3 character (i.e. χσ(e)=3\chi_{\sigma}(e)=3) of H=A5H=A_{5} such that

χσ((12345))=1+52.\chi_{\sigma}((12345))=\frac{1+\sqrt{5}}{2}.

Let G=A6G=A_{6}, with HH as the subgroup of GG fixing 6. Compute the character IndHGχσ.\mathrm{Ind}^{G}_{H}\chi_{\sigma}.

Solution: We first note the relevant part of the character table of A5A_{5}:

e(12)(34)(123)(12345)(12354)115201212χ3101+52152\begin{array}[]{c|ccccc}&e&(12)(34)&(123)&(12345)&(12354)\\ &1&15&20&12&12\\ \hline\cr\chi&3&-1&0&\frac{1+\sqrt{5}}{2}&\frac{1-\sqrt{5}}{2}\\ \end{array}

Next we determine the conjugacy classes of A6A_{6} and their representatives. Note that the only cycle type of distinct odd lengths is 5 + 1, that is, a 5-cycle. So this is the only conjugacy class of S6S_{6} that ’splits’ in A6A_{6}.

The conjugacy classes and their sizes are given below:

e1(12)(34)(62)3=45(123)(63)2=40(123)(456)12(63)22=40(1234)(56)(62)3!=90(12345)1264!=72(12354)72\begin{array}[]{cc}e&1\\ (12)(34)&\binom{6}{2}\cdot 3=45\\ (123)&\binom{6}{3}\cdot 2=40\\ (123)(456)&\frac{1}{2}\binom{6}{3}\cdot 2\cdot 2=40\\ (1234)(56)&\binom{6}{2}\cdot 3!=90\\ (12345)&\frac{1}{2}\cdot 6\cdot 4!=72\\ (12354)&72\\ \end{array}

We see that, for each conjugacy class 𝒞{\mathcal{C}} of A6A_{6}, 𝒞A5{\mathcal{C}}\cap A_{5} is either empty (if 𝒞{\mathcal{C}} is the class of (123)(456)(123)(456) or (1234)(56)(1234)(56)), or a single conjugacy class 𝒟{\mathcal{D}} of A5A_{5}. In the first case,

(IndA5A6χ)(𝒞)=0(\mathrm{Ind}_{A_{5}}^{A_{6}}\chi)({\mathcal{C}})=0

and in the second

(IndA5A6χ)(𝒞)=|A6||𝒟||A5||𝒞|χ(𝒟).(\mathrm{Ind}_{A_{5}}^{A_{6}}\chi)({\mathcal{C}})=\frac{|A_{6}||{\mathcal{D}}|% }{|A_{5}||{\mathcal{C}}|}\chi({\mathcal{D}}).

We obtain

e(12)(34)(123)(123)(456)(1234)(56)(12345)(12354)1454040907272IndHGχ1820001+52152\begin{array}[]{c|ccccccc}&e&(12)(34)&(123)&(123)(456)&(1234)(56)&(12345)&(123% 54)\\ &1&45&40&40&90&72&72\\ \hline\cr\mathrm{Ind}_{H}^{G}\chi&18&-2&0&0&0&\frac{1+\sqrt{5}}{2}&\frac{1-% \sqrt{5}}{2}\\ \end{array}

Problem 87. Let H=(12p)SpH=\langle(12\ldots p)\rangle\subset S_{p}, for pp a prime, and ψ\psi a nontrivial character of HH.

  1. (a)

    Compute IndHSpψ.\mathrm{Ind}_{H}^{S_{p}}\psi.

  2. (b)

    By considering IndHSpψ,IndHSpψSp\langle\mathrm{Ind}_{H}^{S_{p}}\psi,\mathrm{Ind}_{H}^{S_{p}}\psi\rangle_{S_{p}}, show that

    (p1)!1(modp).(p-1)!\equiv-1\quad(\mathrm{mod}\;p).

    (Recall that if ζ\zeta is a non-trivial pp-th root of unity, we have 1+ζ+ζ2++ζp1=01+\zeta+\zeta^{2}+\ldots+\zeta^{p-1}=0.)

Solution: Write χ~\tilde{\chi} for the induced character. Since the only conjugacy classes of SnS_{n} that intersect HH are the identity and the pp-cycles, we see that

χ~(g)=0\tilde{\chi}(g)=0

if gg is not a pp-cycle or the identity. We have

χ~(e)=[G:H]=p!/p=(p1)!.\tilde{\chi}(e)=[G:H]=p!/p=(p-1)!.

Finally, let g=(12p)g=(12\ldots p). Then the conjugacy class 𝒞{\mathcal{C}} of gg in SnS_{n} contains all the nonidentity elements of HH, each of which is its own conjugacy class in HH as HH is abelian. We therefore have

χ~(𝒞)=|G||H|i=1p11|𝒞|χ(gi)\tilde{\chi}({\mathcal{C}})=\frac{|G|}{|H|}\sum_{i=1}^{p-1}\frac{1}{|{\mathcal% {C}}|}\chi(g^{i})

We have |𝒞|=(p1)!|{\mathcal{C}}|=(p-1)!. If χ(g)=ζ\chi(g)=\zeta, then

i=1p1χ(gi)=i=1p1ζi=1\sum_{i=1}^{p-1}\chi(g^{i})=\sum_{i=1}^{p-1}\zeta^{i}=-1

by the hint. Therefore

χ~(𝒞)=1.\tilde{\chi}({\mathcal{C}})=-1.

This completes the solution to the first part. For the second part, if we compute χ~,χ~\langle\tilde{\chi},\tilde{\chi}\rangle we get

1p!((p1)!2+(p1)!1)=1p((p1)!+1).\frac{1}{p!}\left((p-1)!^{2}+(p-1)!\cdot 1\right)=\frac{1}{p}\left((p-1)!+1% \right).

This is an integer (because χ~\tilde{\chi} is the character of a representation), so (p1)!+1(p-1)!+1 is divisible by pp, as required.

Problem 88. Let

G=x,y|y7=x3=e,xyx1=y2.G=\left\langle x,y|y^{7}=x^{3}=e,\,xyx^{-1}=y^{2}\right\rangle.

GG has 21 elements, and may be expressed as {xiyj| 0i2, 0j6}\{x^{i}y^{j}\,|\,0\leq i\leq 2,\,0\leq j\leq 6\}.

  1. (a)

    Show that H=yH=\langle y\rangle is a normal subgroup of GG.

  2. (b)

    By considering representations lifted from G/HG/H and induced from HH, find the character table of GG.

Solution:

  1. (1)

    Since GG is generated by xx and yy, in order to show that HH is normal, it suffices to show that xHx1=HxHx^{-1}=H and yHy1=HyHy^{-1}=H. Every element of HH is of the form yjy^{j} for some j/7j\in{\mathbb{Z}}/7{\mathbb{Z}}. We then have

    xyjx1=y2jH,yyjy1=yjH,xy^{j}x^{-1}=y^{2j}\in H,\quad yy^{j}y^{-1}=y^{j}\in H,

    hence HH is normal.

  2. (2)

    We now determine the conjugacy classes of GG. As usual, we choose an element, and successively conjugate it by the generators until we have a whole conjugacy class, and then repeat until every element of GG has been assigned a conjugacy class (cf. Problems 3,4,5):

    • {e}\{e\} is a conjugacy class

    • Taking yy, conjugating with yy doesn’t do anything. Conjugating with xx gives y2y^{2}. Again, conjugating y2y^{2} with yy does not give any new elements. Conjugating with xx gives y4y^{4}. Repeating gives xy4x1=y8=yxy^{4}x^{-1}=y^{8}=y, so {y,y2,y4}\{y,y^{2},y^{4}\} is a conjugacy class.

    • Starting with y3y^{3} and conjugating with xx gives y6y^{6}. We then have xy6x1=y12=y5xy^{6}x^{-1}=y^{12}=y^{5}, and xy5x1=y10=y3xy^{5}x^{-1}=y^{10}=y^{3}, so {y3,y5,y6}\{y^{3},y^{5},y^{6}\} is a conjugacy class.

    • Now taking xx and conjugating with yy, we have (using x1=x2x^{-1}=x^{2})

      yxy1=x3yx4y1=x2y2x2y1=xy4y1=xy3.yxy^{-1}=x^{3}yx^{4}y^{-1}=x^{2}y^{2}x^{2}y^{-1}=xy^{4}y^{-1}=xy^{3}.

      Now conjugating xy3xy^{3} by xx gives

      xxy3x1=xy6,x\cdot xy^{3}x^{-1}=xy^{6},

      and conjugating by yy gives

      yxy3y1=x3yx4y2=x2y2x2y2=xy4y2=xy6.yxy^{3}y^{-1}=x^{3}yx^{4}y^{2}=x^{2}y^{2}x^{2}y^{2}=xy^{4}y^{2}=xy^{6}.

      The conjugations of xy6xy^{6} give

      x2y6x1=xy12=xy5,yxy6y1=x3yx4y5=xy9=xy2,x^{2}y^{6}x^{-1}=xy^{12}=xy^{5},\quad yxy^{6}y^{-1}=x^{3}yx^{4}y^{5}=xy^{9}=xy% ^{2},

      and then conjugating xy5xy^{5}:

      x2y5x1=xy10=xy3,yxy5y1=x3yx4y4=xy8=xy.x^{2}y^{5}x^{-1}=xy^{10}=xy^{3},\quad yxy^{5}y^{-1}=x^{3}yx^{4}y^{4}=xy^{8}=xy.

      Conjugating xy2xy^{2} gives

      x2y2x1=xy4,yxy2y1=x3yx4y=xy5,x^{2}y^{2}x^{-1}=xy^{4},\quad yxy^{2}y^{-1}=x^{3}yx^{4}y=xy^{5},

      conjugating xyxy gives

      x2yx1=xy2,yxyy1=x3yx4=xy4,x^{2}yx^{-1}=xy^{2},\quad yxyy^{-1}=x^{3}yx^{4}=xy^{4},

      and finally conjugating xy4xy^{4} gives

      x2y4x1=xy8=xy,yxy4y1=x3yx4y3=xy7=x,x^{2}y^{4}x^{-1}=xy^{8}=xy,\quad yxy^{4}y^{-1}=x^{3}yx^{4}y^{3}=xy^{7}=x,

      so {x,xy,xy2,xy3,xy4,xy5,xy6}\{x,xy,xy^{2},xy^{3},xy^{4},xy^{5},xy^{6}\} is a conjugacy class.

    • Similarly to case iv), for any element of the form x2yjx^{2}y^{j}, we have

      y(x2yj)y1=x3yx2yj1=x2yj+1,y(x^{2}y^{j})y^{-1}=x^{3}yx^{2}y^{j-1}=x^{2}y^{j+1},

      hence all elements of the form x2ykx^{2}y^{k} are in the same conjugacy class, i.e. the final conjugacy class is {x2,x2y,x2y2,x2y3,x2y4,x2y5,x2y6}\{x^{2},x^{2}y,x^{2}y^{2},x^{2}y^{3},x^{2}y^{4},x^{2}y^{5},x^{2}y^{6}\}

    Since |G~|=|G/H|=3|\widetilde{G}|=|G/H|=3, G~C3\widetilde{G}\cong C_{3}, which has three irreducible representations: apart from the trivial representation, let ψ~1,ψ~2\widetilde{\psi}_{1},\widetilde{\psi}_{2} the one-dimensional be defined through

    ψ~i(xjN)=ωijN,\widetilde{\psi}_{i}(x^{j}N)=\omega^{ij}N,

    where ω=e2πi/3\omega=e^{2\pi i/3}. Lifting these to GG gives three irreducible representations:

    size: 1 3 3 7 7
    ee yy y3y^{3} xx x2x^{2}
    (Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1 1
    (ψ1,)(\psi_{1},{\mathbb{C}}) 1 1 1 ω\omega ω2\omega^{2}
    (ψ2,)(\psi_{2},{\mathbb{C}}) 1 1 1 ω2\omega^{2} ω\omega

    We are now missing two irreducible representations of GG, and by counting dimensions, we see that they both must have dimension three.

    Since HC7H\cong C_{7}, it has seven irreducible representations, each of which we can induce to GG. The character formula in our case reads

    IndHGχπ(𝒞)=3|𝒞|𝒟𝒞χπ(𝒟),\mathrm{Ind}_{H}^{G}\chi_{\pi}({\mathcal{C}})=\frac{3}{|{\mathcal{C}}|}\sum_{{% \mathcal{D}}\subset{\mathcal{C}}}\chi_{\pi}({\mathcal{D}}),

    (where each 𝒟{\mathcal{D}} is a conjugacy class of HH, and hence |𝒟|=1|{\mathcal{D}}|=1) so the character of IndHGχId\mathrm{Ind}_{H}^{G}\chi_{{\,\mathrm{Id}}} is given by

    size: 1 3 3 7 7
    ee yy y3y^{3} xx x2x^{2}
    IndHGχId\mathrm{Ind}_{H}^{G}\chi_{{\,\mathrm{Id}}} 3 3 3 0 0

    Since all the entries of the above are non-negative, this character has positive inner product with the trivial representation of GG, and is therefore not irreducible (one can quickly see that it is the direct sum of the three one-dimensional irreducible representations). Next we induce the non-trivial representation of HH given by σ1(yj)=ηj\sigma_{1}(y^{j})=\eta^{j}, where η=e2πi/7\eta=e^{2\pi i/7}:

    size: 1 3 3 7 7
    ee yy y3y^{3} xx x2x^{2}
    IndHGσ1\mathrm{Ind}_{H}^{G}\sigma_{1} 3 η+η2+η4\eta+\eta^{2}+\eta^{4} η3+η5+η6\eta^{3}+\eta^{5}+\eta^{6} 0 0

    Noting that η3+η5+η6=η+η2+η4¯\eta^{3}+\eta^{5}+\eta^{6}=\overline{\eta+\eta^{2}+\eta^{4}}), we have

    |η+η2+η4|2=|η3+η5+η6|2=(η+η2+η4)(η3+η5+η6)=2,|\eta+\eta^{2}+\eta^{4}|^{2}=|\eta^{3}+\eta^{5}+\eta^{6}|^{2}=(\eta+\eta^{2}+% \eta^{4})(\eta^{3}+\eta^{5}+\eta^{6})=2,

    giving IndHGσ1G2=1,\|\mathrm{Ind}_{H}^{G}\sigma_{1}\|_{G}^{2}=1, so this is irreducible. We see that inducing σ2\sigma_{2} (defined through σ2(y)=η2\sigma_{2}(y)=\eta^{2}) will give the same representation, whereas inducing σ3\sigma_{3} will swap the two terms η+η2+η4\eta+\eta^{2}+\eta^{4} and η3+η5+η6\eta^{3}+\eta^{5}+\eta^{6}:

    size: 1 3 3 7 7
    ee yy y3y^{3} xx x2x^{2}
    IndHGσ3\mathrm{Ind}_{H}^{G}\sigma_{3} 3 η3+η5+η6\eta^{3}+\eta^{5}+\eta^{6} η+η2+η4\eta+\eta^{2}+\eta^{4} 0 0

    This completes the table:

    size: 1 3 3 7 7
    ee yy y3y^{3} xx x2x^{2}
    (Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1 1
    (ψ1,)(\psi_{1},{\mathbb{C}}) 1 1 1 ω\omega ω2\omega^{2}
    (ψ2,)(\psi_{2},{\mathbb{C}}) 1 1 1 ω2\omega^{2} ω\omega
    IndHGσ1\mathrm{Ind}_{H}^{G}\sigma_{1} 3 η+η2+η4\eta+\eta^{2}+\eta^{4} η3+η5+η6\eta^{3}+\eta^{5}+\eta^{6} 0 0
    IndHGσ3\mathrm{Ind}_{H}^{G}\sigma_{3} 3 η3+η5+η6\eta^{3}+\eta^{5}+\eta^{6} η+η2+η4\eta+\eta^{2}+\eta^{4} 0 0

    (One can compute that z=η+η2+η4=1+72z=\eta+\eta^{2}+\eta^{4}=\frac{-1+\sqrt{-7}}{2}; z2=η2+η4+η+2η3+2η5+2η6=2zz^{2}=\eta^{2}+\eta^{4}+\eta+2\eta^{3}+2\eta^{5}+2\eta^{6}=-2-z, i.e. z2+z+2=0z^{2}+z+2=0.)