Lecture 13

Problem 77. Let (π~,V)(\widetilde{\pi},V) be the lift to GG of a representation (π,V)(\pi,V) of G~=G/N\widetilde{G}=G/N. Show that

χπ~(g)=χπ(gN)gG.\chi_{\widetilde{\pi}}(g)=\chi_{\pi}(gN)\qquad\forall g\in G.

Solution: Let v1,,vdv_{1},\ldots,v_{d} be an eigenbasis of VV for π(gN)\pi(gN), i.e. π(gN)vi=λivi\pi(gN)v_{i}=\lambda_{i}v_{i}, and {vi}\{v_{i}\} is a basis of VV. Then χπ(gN)=iλi\chi_{\pi}(gN)=\sum_{i}\lambda_{i}, and

π~(g)vi=π(gN)vi=λivi,\widetilde{\pi}(g)v_{i}=\pi(gN)v_{i}=\lambda_{i}v_{i},

and hence {vi}\{v_{i}\} is an eigenbasis for VV w.r.t. π~(g)\widetilde{\pi}(g), giving χπ~(g)=iλi=χπ(gN)\chi_{\widetilde{\pi}}(g)=\sum_{i}\lambda_{i}=\chi_{\pi}(gN).

Problem 78. Show Proposition 13.7:

Prop. 13.7. Every normal subgroup NN of a finite group GG may be expressed as

N=i=1nkerρ~iN=\bigcap_{i=1}^{n}\ker\widetilde{\rho}_{i}

for some collection (ρ~i,Vi)(\widetilde{\rho}_{i},V_{i}) of irreducible representations of GG.

Proceed as follows:

  1. (a)

    Let {(ρi,Vi)}\{(\rho_{i},V_{i})\} denote the irreducible representations of G~\widetilde{G}, and let (ρ~i,Vi)(\widetilde{\rho}_{i},V_{i}) be the lift of (ρi,Vi)(\rho_{i},V_{i}) to GG. Define

    K=i=1nkerρ~i.K=\bigcap_{i=1}^{n}\ker\widetilde{\rho}_{i}.

    Show that KK is normal in GG.

  2. (b)

    Use Proposition 13.2 to show that NKN\subset K, and hence |G/K||G/N||G/K|\leq|G/N|.

  3. (c)

    Use Theorem 6.6 to show that |G/N|=i(dimVi)2|G/N|=\sum_{i}(\operatorname{dim}V_{i})^{2}.

  4. (d)

    Use Propositions 13.8 to show that each (ρ~i,Vi)(\widetilde{\rho}_{i},V_{i}) is the lift of an irreducible representation representation (σi,Vi)(\sigma_{i},V_{i}) of G/KG/K.

  5. (e)

    Use Theorem 6.6 to show that i(dimVi)2|G/K|\sum_{i}(\operatorname{dim}V_{i})^{2}\leq|G/K|.

  6. (f)

    Conclude that N=KN=K.

Solution:

  1. (a)

    This is a direct consequence of the two following facts from group theory (i) If ψ:GH\psi:G\rightarrow H is a group homomorphism, then kerψ\ker\psi is a normal subgroup of GG (ii) The intersection of two normal subgroups is a normal subgroup.

  2. (b)

    By Proposition 13.2, Nkerρ~iN\subset\ker\widetilde{\rho}_{i} for each ii, hence Nikerρ~i=KN\subset\bigcap_{i}\ker\widetilde{\rho}_{i}=K, hence |G/K||G/N||G/K|\leq|G/N|.

  3. (c)

    By Theorem 6.6, |G/N|=|G~|=i(dimVi)2|G/N|=|\widetilde{G}|=\sum_{i}(\operatorname{dim}V_{i})^{2}.

  4. (d)

    Since (ρi,Vi)(\rho_{i},V_{i}) is an irreducible representation of G~\widetilde{G}, its lift (ρ~i,Vi)(\widetilde{\rho}_{i},V_{i}) is an irreducible representation of GG. By construction Kkerρ~iK\subset\ker\widetilde{\rho}_{i}, hence by Proposition 13.2, we may express (ρ~i,Vi)(\widetilde{\rho}_{i},V_{i}) as the lift of a representation (σi,Vi)(\sigma_{i},V_{i}) of G/KG/K. Since (ρ~i,Vi)(\widetilde{\rho}_{i},V_{i}) is an irreducible representation of GG, Proposition 13.3 gives that (σi,Vi)(\sigma_{i},V_{i}) is an irreducible representation of G/KG/K.

  5. (e)

    We have shown that each (σi,Vi)(\sigma_{i},V_{i}) is an irreducible representation of G/KG/K. Theorem 6.6 then gives i(dimVi)2|G/K|\sum_{i}(\operatorname{dim}V_{i})^{2}\leq|G/K|, provided that the representations (σi,Vi)(\sigma_{i},V_{i}) are all pairwise non-isomorphic to each other. The representations (ρ~i,Vi)(\widetilde{\rho}_{i},V_{i}) are non-isomorphic representations of G/NG/N, hence for each pair i,ji,j, we can find gG/Ng\in G/N such that

    χρ~i(gN)χρ~j(gN).\chi_{\widetilde{\rho}_{i}}(gN)\neq\chi_{\widetilde{\rho}_{j}}(gN).

    Then by Problem 77,

    χρ~i(gN)=χρi(g)=χσi(gK),\chi_{\widetilde{\rho}_{i}}(gN)=\chi_{\rho_{i}}(g)=\chi_{\sigma_{i}}(gK),

    and similarly for σj\sigma_{j}, giving

    χσi(gK)χσj(gK),\chi_{\sigma_{i}}(gK)\neq\chi_{\sigma_{j}}(gK),

    showing that the representations are non-isomorphic.

  6. (f)

    By (b), (c), and (e), we have

    |G/K||G/N|=i(dimVi)2|G/K|,|G/K|\leq|G/N|=\sum_{i}(\operatorname{dim}V_{i})^{2}\leq|G/K|,

    hence |G/N|=|G/K|G/N|=|G/K, i.e. |N|=|K||N|=|K|. Since NKN\subset K, we then have that N=K=i=1nkerρ~iN=K=\bigcap_{i=1}^{n}\ker\widetilde{\rho}_{i}, as desired.

Problem 79. Using the character table of S5S_{5}, find the character table of A5A_{5}. Using the character table, show that A5A_{5} is simple (that is, it has no nontrivial proper normal subgroups). Hint: every element of A5A_{5} is conjugate to its inverse.

Solution: The character table of S5S_{5} is

size: 1 10 15 20 20 30 24
ee (1 2)(1\;2) (1 2)(3 4)(1\;2)(3\;4) (1 2 3)(1\;2\;3) (1 2 3)(4 5)(1\;2\;3)(4\;5) (1 2 3 4)(1\;2\;3\;4) (1 2 3 4 5)(1\;2\;3\;4\;5)
(Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1 1 1 1
(sgn,)(\mathrm{sgn},{\mathbb{C}}) 1 -1 1 1 -1 -1 1
(π,W0)(\pi,W_{0}) 4 22 0 1 -1 0 -1
(sgnπ,W0)(\mathrm{sgn}\,\pi,W_{0}) 4 -2 0 1 1 0 -1
(ρ,V)(\rho,V) 5 1 1 -1 1 -1 0
(sgnρ,V)(\mathrm{sgn}\rho,V) 5 -1 1 -1 -1 1 0
(ππ,2W0)(\pi\wedge\pi,\bigwedge^{2}W_{0}) 6 0 -2 0 0 0 1

We recall that the conjugacy classes of A5A_{5} are given as follows (cf. Problem 51 Lecture 10)

class size
[e] 1
[(1 2)(3 4)] 15
[(1 2 3)] 20
[(1 2 3 4 5)] 12
[(1 3 4 5 2)] 12

We know the trivial representation, and compute the norm of the restriction of (π|A5,W0)(\pi|_{A_{5}},W_{0}):

χπ|A52=160(42+20+24)=1,\|\chi_{\pi|_{A_{5}}}\|^{2}=\frac{1}{60}\big{(}4^{2}+20+24\big{)}=1,

so (π|A5,W0)(\pi|_{A_{5}},W_{0}) is irreducible. We also consider (ρ|A5,V)(\rho|_{A_{5}},V):

χρ|A52=160(52+15+20)=1,\|\chi_{\rho|_{A_{5}}}\|^{2}=\frac{1}{60}\big{(}5^{2}+15+20\big{)}=1,

so this is also irreducible. The table so far reads

size: 1 15 20 12 12
ee (1 2)(3 4)(1\;2)(3\;4) (1 2 3)(1\;2\;3) (1 2 3 4 5)(1\;2\;3\;4\;5) (1 3 4 5 2)(1\;3\;4\;5\;2)
(Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1 1
(π|A5,W0)(\pi|_{A_{5}},W_{0}) 4 0 1 -1 -1
(ρ|A5,V)(\rho|_{A_{5}},V) 5 1 -1 0 0

From this, we see that there must be two 3-dimensional irreducible representations. We now consider (ππ)|A5(\pi\wedge\pi)|_{A_{5}}. Observe that

χ(ππ)|A5A52=160(62+14(2)2+2412)=2,\|\chi_{(\pi\wedge\pi)|_{A_{5}}}\|^{2}_{A_{5}}=\frac{1}{60}\big{(}6^{2}+14% \cdot(-2)^{2}+24\cdot 1^{2}\big{)}=2,

so ππ\pi\wedge\pi is the direct sum of two distinct irreducible representations of A5A_{5}. We compute the following inner products:

χ(ππ)|A5,χIdA5=χ(ππ)|A5,χπ|A5A5=χ(ππ)|A5,χρ|A5A5=0,\langle\chi_{(\pi\wedge\pi)|_{A_{5}}},\chi_{{\,\mathrm{Id}}}\rangle_{A_{5}}=% \langle\chi_{(\pi\wedge\pi)|_{A_{5}}},\chi_{\pi|_{A_{5}}}\rangle_{A_{5}}=% \langle\chi_{(\pi\wedge\pi)|_{A_{5}}},\chi_{\rho|_{A_{5}}}\rangle_{A_{5}}=0,

so the two remaining irreducible representations we are looking for are both subrepresentations of (ππ)|A5(\pi\wedge\pi)|_{A_{5}}. The character table is then of the form

size: 1 15 20 12 12
ee (1 2)(3 4)(1\;2)(3\;4) (1 2 3)(1\;2\;3) (1 2 3 4 5)(1\;2\;3\;4\;5) (1 3 4 5 2)(1\;3\;4\;5\;2)
(Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1 1
(π|A5,W0)(\pi|_{A_{5}},W_{0}) 4 0 1 -1 -1
(ρ|A5,V)(\rho|_{A_{5}},V) 5 1 -1 0 0
(σ1,U1)(\sigma_{1},U_{1}) 33 aa bb cc dd
(σ2,U2)(\sigma_{2},U_{2}) 33 (2+a)-(2+a) b-b 1c1-c 1d1-d

Since each element of A5A_{5} is conjugate to its inverse χσi(g)=χσi(g1)=χσi(g)¯\chi_{\sigma_{i}}(g)=\chi_{\sigma_{i}}(g^{-1})=\overline{\chi_{\sigma_{i}}(g)}, hence a,b,c,da,b,c,d\in{\mathbb{R}}. Using Theorem 19 for the norms of the columns:

12+02+12+a2+(2+a)2=6015=4\displaystyle 1^{2}+0^{2}+1^{2}+a^{2}+(2+a)^{2}=\frac{60}{15}=4
12+12+(1)2+b2+(b)2=6020=3\displaystyle 1^{2}+1^{2}+(-1)^{2}+b^{2}+(-b)^{2}=\frac{60}{20}=3
12+(1)2+02+c2+(1c)2=6012=5\displaystyle 1^{2}+(-1)^{2}+0^{2}+c^{2}+(1-c)^{2}=\frac{60}{12}=5
12+(1)2+02+d2+(1d)2=6012=5.\displaystyle 1^{2}+(-1)^{2}+0^{2}+d^{2}+(1-d)^{2}=\frac{60}{12}=5.

Solving these gives a=1a=-1, b=0b=0, c=1±52c=\frac{1\pm\sqrt{5}}{2}, d=1±52d=\frac{1\pm\sqrt{5}}{2}. Column orthogonality gives that dd is the quadratic conjugate of cc, giving the table

size: 1 15 20 12 12
ee (1 2)(3 4)(1\;2)(3\;4) (1 2 3)(1\;2\;3) (1 2 3 4 5)(1\;2\;3\;4\;5) (1 3 4 5 2)(1\;3\;4\;5\;2)
(Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1 1
(π|A5,W0)(\pi|_{A_{5}},W_{0}) 4 0 1 -1 -1
(ρ|A5,V)(\rho|_{A_{5}},V) 5 1 -1 0 0
(σ1,U1)(\sigma_{1},U_{1}) 33 1-1 0 1+52\frac{1+\sqrt{5}}{2} 152\frac{1-\sqrt{5}}{2}
(σ2,U2)(\sigma_{2},U_{2}) 33 1-1 0 152\frac{1-\sqrt{5}}{2} 1+52\frac{1+\sqrt{5}}{2}

We see that each irreducible representation is faithful, i.e. has trivial kernel. By Proposition 13.7, we then have that {e}\{e\} is the only proper normal subgroup of A5A_{5}.

Problem 80. (Challenging!) Let (π,V)(\pi,V) be a faithful finite-dimensional representation of a finite group GG. Given an irreducible representation (ρ,W)(\rho,W) of GG, show that (ρ,W)(\rho,W) is isomorphic to a subrepresentation of (πn,Vn)(\pi^{\otimes n},V^{\otimes n}) for some n1n\geq 1.

Solution: We outline two different solutions:

  1. (i)

    Using analysis: We start by showing the following lemma:

    Lemma: If |χπ(h)|=dimV|\chi_{\pi}(h)|=\operatorname{dim}V, then π(h)=λId\pi(h)=\lambda{\,\mathrm{Id}} for some λ\lambda\in{\mathbb{C}}^{*}.

    Proof: χπ(h)=λ1+λ2++λdimV\chi_{\pi}(h)=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{\operatorname{dim}V}, where each λi\lambda_{i} is an eigenvalue of π(h)\pi(h), and hence a root of unity. Since

    dimV=|χπ(h)|=|λ1++λdimV||λ1|++|λdimV|=dimV,\operatorname{dim}V=|\chi_{\pi}(h)|=|\lambda_{1}+\ldots+\lambda_{\operatorname% {dim}V}|\leq|\lambda_{1}|+\ldots+|\lambda_{\operatorname{dim}V}|=\operatorname% {dim}V,

    equality holds in the triangle equality if the numbers are colinear, we must have λ1=λ2=+λdimV\lambda_{1}=\lambda_{2}=\ldots+\lambda_{\operatorname{dim}V}, hence π(h)=λ1Id\pi(h)=\lambda_{1}{\,\mathrm{Id}}.

    We now define HGH\subset G by

    H={hG||χπ(h)|=dimV}.H=\{h\in G\,|\,|\chi_{\pi}(h)|=\operatorname{dim}V\}.

    Observe that by the Lemma above, HH is a subgroup of GG: if h1,h2Hh_{1},h_{2}\in H, then π(h1)=λ1Id\pi(h_{1})=\lambda_{1}{\,\mathrm{Id}}, π(h2)=λ2Id\pi(h_{2})=\lambda_{2}{\,\mathrm{Id}}, hence π(h21)=λ21Id\pi(h_{2}^{-1})=\lambda_{2}^{-1}{\,\mathrm{Id}}, and so π(h1h21)=λ1λ21Id\pi(h_{1}h_{2}^{-1})=\lambda_{1}\lambda_{2}^{-1}{\,\mathrm{Id}}, giving χπ(h1h21)=λ1λ21dimV\chi_{\pi}(h_{1}h_{2}^{-1})=\lambda_{1}\lambda_{2}^{-1}\cdot\operatorname{dim}V, and so |χπ(h1h21)|=dimV|\chi_{\pi}(h_{1}h_{2}^{-1})|=\operatorname{dim}V, hence h1h21Hh_{1}h_{2}^{-1}\in H.

    Let c=maxgGH|χπ(g)|<dimVc=\max_{g\in G\setminus H}|\chi_{\pi}(g)|<\operatorname{dim}V. Then for any irreducible representation (ρ,W)(\rho,W) of GG, we have

    χρ,χπnG\displaystyle\langle\chi_{\rho},\chi_{\pi^{\otimes n}}\rangle_{G} =χρ,χπnG=|H||G|χρ|H,χπ|HnH+1|G|gGHχρ(g)χπ(g)n\displaystyle=\langle\chi_{\rho},\chi_{\pi}^{n}\rangle_{G}=\frac{|H|}{|G|}% \langle\chi_{\rho|_{H}},\chi_{\pi|_{H}}^{n}\rangle_{H}+\frac{1}{|G|}\sum_{g\in G% \setminus H}\chi_{\rho}(g)\chi_{\pi}(g)^{n}
    =|H||G|χρ|H,χπ|HnH+O(|G||H||G|dimWcn)\displaystyle=\frac{|H|}{|G|}\langle\chi_{\rho|_{H}},\chi_{\pi|_{H}}^{n}% \rangle_{H}+O\left(\frac{|G|-|H|}{|G|}\cdot\operatorname{dim}W\cdot c^{n}\right)

    For hHh\in H, we write π(h)=λhId\pi(h)=\lambda_{h}{\,\mathrm{Id}}, hence χπ|Hn(h)=(dimV)nλhn\chi_{\pi|_{H}}^{n}(h)=(\operatorname{dim}V)^{n}\lambda_{h}^{n}, and so

    χρ,χπnG=(dimV)n(hHχρ|H(h)λh¯n+O(|G||H||G|dimW(cdimV)n))\langle\chi_{\rho},\chi_{\pi^{\otimes n}}\rangle_{G}=(\operatorname{dim}V)^{n}% \left(\sum_{h\in H}\chi_{\rho|_{H}}(h)\overline{\lambda_{h}}^{n}+O\left(\frac{% |G|-|H|}{|G|}\cdot\operatorname{dim}W\cdot\left(\frac{c}{\operatorname{dim}V}% \right)^{n}\right)\right)

    Since π\pi is faithful, we must have λh1λh2\lambda_{h_{1}}\neq\lambda_{h_{2}} for h1h2Hh_{1}\neq h_{2}\in H (otherwise λh1h21=1\lambda_{h_{1}h_{2}^{-1}}=1, hence h1h21kerπh_{1}h_{2}^{-1}\in\ker\pi). Thus ψ:H×\psi:H\rightarrow{\mathbb{C}}^{\times}, ψ(h)=λh\psi(h)=\lambda_{h} is an isomorphism from HH to a finite subgroup of the unit circle; HH is therefore cyclic, and the values taken by ψ\psi must be 1,ω,ω2,,ω|H|11,\omega,\omega^{2},\ldots,\omega^{|H|-1}, where ω=e2πi/|H|\omega=e^{2\pi i/|H|}. Note that every other irreducible character of HH is of the form ψk\psi^{k} for some k/|H|k\in{\mathbb{Z}}/|H|{\mathbb{Z}}. There then exist k1,k2,kNk_{1},k_{2},\ldots k_{N} such that

    χρ|H=i=1Nψki,\chi_{\rho|H}=\sum_{i=1}^{N}\psi^{k_{i}},

    giving

    hHχρ|H(h)λh¯n=i=1NhHψkin(h).\sum_{h\in H}\chi_{\rho|_{H}}(h)\overline{\lambda_{h}}^{n}=\sum_{i=1}^{N}\sum_% {h\in H}\psi^{k_{i}-n}(h).

    Letting n=k1+n|H|n=k_{1}+n^{\prime}|H| gives

    hHψki(k1+n|H|)(h)={|H|ifkik1(mod|H|)0otherwise.\sum_{h\in H}\psi^{k_{i}-(k_{1}+n^{\prime}|H|)}(h)=\begin{cases}|H|\quad&% \mathrm{if}\;k_{i}\equiv k_{1}\quad(\mathrm{mod}\;|H|)\\ 0\quad&\mathrm{otherwise.}\end{cases}

    Summing over the kik_{i}, we get

    hHχρ|H(h)λh¯k1+n|H|=#{1iN|kiHk1}\sum_{h\in H}\chi_{\rho|_{H}}(h)\overline{\lambda_{h}}^{k_{1}+n^{\prime}|H|}=% \#\{1\leq i\leq N\,|\,k_{i}\equiv_{H}k_{1}\}

    We enter this into the expression for χρ,χπ(k1+n|H|)G\langle\chi_{\rho},\chi_{\pi^{\otimes(k_{1}+n^{\prime}|H|)}}\rangle_{G} obtained above, giving

    χρ,χπ(k1+n|H|)G=(dimV)k1+n|H|(#{1iN|kiHk1}+O((cdimV)k1+n|H|)).\langle\chi_{\rho},\chi_{\pi^{\otimes(k_{1}+n^{\prime}|H|)}}\rangle_{G}=(% \operatorname{dim}V)^{k_{1}+n^{\prime}|H|}\left(\#\{1\leq i\leq N\,|\,k_{i}% \equiv_{H}k_{1}\}+O\left(\left(\frac{c}{\operatorname{dim}V}\right)^{k_{1}+n^{% \prime}|H|}\right)\right).

    Since c<dimVc<\operatorname{dim}V, taking nn^{\prime} large enough gives

    χρ,χπ(k1+n|H|)G=(dimV)k1+n|H|(#{1iN|kiHk1}+ηn),\langle\chi_{\rho},\chi_{\pi^{\otimes(k_{1}+n^{\prime}|H|)}}\rangle_{G}=(% \operatorname{dim}V)^{k_{1}+n^{\prime}|H|}\left(\#\{1\leq i\leq N\,|\,k_{i}% \equiv_{H}k_{1}\}+\eta_{n^{\prime}}\right),

    with |ηn|12|\eta_{n^{\prime}}|\leq\frac{1}{2}. The right-hand side is then non-zero, giving χρ,χπ(k1+n|H|)G>0\langle\chi_{\rho},\chi_{\pi^{\otimes(k_{1}+n^{\prime}|H|)}}\rangle_{G}>0, i.e. ρ\rho occurs as a subrepresentation of π(k1+n|H|)\pi^{\otimes(k_{1}+n^{\prime}|H|)}.

  2. (ii)

    Using linear algebra: Denote the distinct non-zero values χπ\chi_{\pi} takes by r1,r2,rmr_{1},r_{2},\ldots r_{m}. We may assume that r1=dimVr_{1}=\operatorname{dim}V. For i=1,,mi=1,\ldots,m, define

    ai=gG|χπ(g)=riχσ(g)a_{i}=\sum_{g\in G\,|\,\chi_{\pi}(g)=r_{i}}\chi_{\sigma}(g)

    Using that π\pi is faithful, we have a1=χπ(e)=dimWa_{1}=\chi_{\pi}(e)=\operatorname{dim}W. For each nn\in{\mathbb{N}}, we have

    χρ,χπnG=1|G|(a1,a2,,am)(r1n,r2n,rmn)\langle\chi_{\rho},\chi_{\pi^{\otimes n}}\rangle_{G}=\frac{1}{|G|}\big{(}a_{1}% ,a_{2},\ldots,a_{m}\big{)}\cdot\big{(}r_{1}^{n},r_{2}^{n},\ldots r_{m}^{n}\big% {)}

    (here “\cdot” denotes the standard inner product on m{\mathbb{C}}^{m}). We compute the determinant of the following Vandermonde matrix:

    det(r1r2rmr12r22rm2r1mr2mrmm)=r1r2rm1i<jm(rjri)0.\det\left(\begin{matrix}r_{1}&r_{2}&\ldots&r_{m}\\ r_{1}^{2}&r_{2}^{2}&\ldots&r_{m}^{2}\\ \vdots&\vdots&&\vdots\\ r_{1}^{m}&r_{2}^{m}&\ldots&r_{m}^{m}\end{matrix}\right)=r_{1}r_{2}\cdots r_{m}% \prod_{1\leq i<j\leq m}(r_{j}-r_{i})\neq 0.

    The vectors (r1,rm)(r_{1},\ldots r_{m}), (r12,rm2)(r_{1}^{2},\ldots r_{m}^{2}), \ldots (r1m,rmm)(r_{1}^{m},\ldots r_{m}^{m}) then form a basis of m{\mathbb{C}}^{m}. Since a1=dimWa_{1}=\operatorname{dim}W, the vector (a1,a2,,am)(a_{1},a_{2},\ldots,a_{m}) is non-zero, and thus cannot be orthogonal to every vector in a basis of m{\mathbb{C}}^{m}. There therefore exists 1nm1\leq n\leq m such that

    χρ,χπnG=1|G|(a1,a2,,am)(r1n,r2n,rmn)0.\langle\chi_{\rho},\chi_{\pi^{\otimes n}}\rangle_{G}=\frac{1}{|G|}\big{(}a_{1}% ,a_{2},\ldots,a_{m}\big{)}\cdot\big{(}r_{1}^{n},r_{2}^{n},\ldots r_{m}^{n}\big% {)}\neq 0.