Lecture 20

Problem 99. Decompose IndS4S6(π,𝒮(3,1))\mathrm{Ind}_{S_{4}}^{S_{6}}\left(\pi,{\mathcal{S}}^{(3,1)}\right) into irreducible representations of S6S_{6}.

Solution: Clearly IndS4S6(π,𝒮(3,1))IndS5S6IndS4S5(π,𝒮(3,1))\mathrm{Ind}_{S_{4}}^{S_{6}}\left(\pi,{\mathcal{S}}^{(3,1)}\right)\cong\mathrm% {Ind}_{S_{5}}^{S_{6}}\mathrm{Ind}_{S_{4}}^{S_{5}}\left(\pi,{\mathcal{S}}^{(3,1% )}\right) as making a choice of coset representatives for S4S5S_{4}\leq S_{5} and then for S5S6S_{5}\leq S_{6} gives us a set of coset representatives for S4S6S_{4}\leq S_{6} and induction is independent of coset representation, by Problem 81. Thus, by Theorem 20.4,

IndS4S6(π,𝒮(3,1))\displaystyle\mathrm{Ind}_{S_{4}}^{S_{6}}\left(\pi,{\mathcal{S}}^{(3,1)}\right) IndS5S6(3,1)+5(π,𝒮(3,1)+)\displaystyle\cong\mathrm{Ind}_{S_{5}}^{S_{6}}\bigoplus_{(3,1)^{+}\vdash 5}(% \pi,{\mathcal{S}}^{(3,1)^{+}})
=IndS5S6((π,𝒮(3,1,1))+(π,𝒮(3,2))+(π,𝒮(4,1)))\displaystyle=\mathrm{Ind}_{S_{5}}^{S_{6}}\left((\pi,{\mathcal{S}}^{(3,1,1)})+% (\pi,{\mathcal{S}}^{(3,2)})+(\pi,{\mathcal{S}}^{(4,1)})\right)
=(3,1,1)+5(π,𝒮(3,1,1)+)+(3,2)+5(π,𝒮(3,2)+)+(4,1)+5(π,𝒮(4,1)+)\displaystyle=\bigoplus_{(3,1,1)^{+}\vdash 5}(\pi,{\mathcal{S}}^{(3,1,1)^{+}})% +\bigoplus_{(3,2)^{+}\vdash 5}(\pi,{\mathcal{S}}^{(3,2)^{+}})+\bigoplus_{(4,1)% ^{+}\vdash 5}(\pi,{\mathcal{S}}^{(4,1)^{+}})
=(π,𝒮(3,1,1,1))+2(π,𝒮(3,2,1))+2(π,𝒮(4,1,1))+(π,𝒮(3,3))+2(π,𝒮(4,2))+(π,𝒮(5,1)).\displaystyle=(\pi,{\mathcal{S}}^{(3,1,1,1)})+2(\pi,{\mathcal{S}}^{(3,2,1)})+2% (\pi,{\mathcal{S}}^{(4,1,1)})+(\pi,{\mathcal{S}}^{(3,3)})+2(\pi,{\mathcal{S}}^% {(4,2)})+(\pi,{\mathcal{S}}^{(5,1)}).

Problem 100. Let T:VWT:V\rightarrow W be a GG-homomorphism between two representations (π,V)(\pi,V) and (ρ,W)(\rho,W). Show that

(π,V)(π,ker(T))(ρ,im(T)).(\pi,V)\cong\big{(}\pi,\ker(T)\big{)}\oplus\big{(}\rho,{\mathrm{im}}(T)\big{)}.

Solution: Recall that Vker(T)im(T)V\cong\ker(T)\oplus{\mathrm{im}}(T) as vector spaces so we simply need to show that the GG-action is preserved. Define

ϕ:Vker(T)im(T);𝐯𝐯T𝐯,\phi:V\longrightarrow\ker(T)\oplus{\mathrm{im}}(T)\;;\;{\bf v}\longmapsto{\bf v% }\oplus T{\bf v},

which is an isomorphism of vector spaces. Let gGg\in G, then

ϕ(π(g)𝐯)=π(g)𝐯Tπ(g)𝐯=π(g)𝐯ϕ(g)T𝐯=(π(g)ϕ(g))(𝐯t𝐯)=(π(g)ϕ(g))ϕ(𝐯),\phi(\pi(g){\bf v})=\pi(g){\bf v}\oplus T\pi(g){\bf v}=\pi(g){\bf v}\oplus\phi% (g)T{\bf v}=(\pi(g)\oplus\phi(g))({\bf v}\oplus t{\bf v})=(\pi(g)\oplus\phi(g)% )\phi({\bf v}),

for all 𝐯V{\bf v}\in V. Thus ϕ\phi is a GG-homomorphism and hence a GG-isomorphism.

Problem 101. Show that the maps TiT_{i}^{\prime} and TiT_{i} defined during the proof of Theorem LABEL:branch are Sn1S_{n-1}-homomorphisms.

Solution: First we note that TiT_{i}^{\prime} is defined on the basis of λ{\mathcal{M}}^{\lambda} so it is clearly linear. Let σSn1\sigma\in S_{n-1} and [t]λ[t]\in{\mathcal{M}}^{\lambda}. We note that [t][t] and [σt][\sigma\cdot t] both have nn in the same row as all elements of Sn1S_{n-1} leave nn invariant. Thus we have σTi([t])=0=Ti([σt])\sigma\cdot T_{i}^{\prime}([t])=0=T_{i}^{\prime}([\sigma\circ t]), when nn and 𝖼i\mathsf{c}_{i} are in different rows and

σTi([t])=σ[t]n=[σt]n=Ti([σt]),\sigma\cdot T_{i}^{\prime}([t])=\sigma\cdot[t]\setminus n=[\sigma\cdot t]% \setminus n=T_{i}^{\prime}([\sigma\circ t]),

otherwise. Thus TiT_{i}^{\prime} is an Sn1S_{n-1}-homomorphism.

Note that T1T_{1} is a restriction of a linear map, hence linear and thus, by induction, each TiT_{i} is linear. Let [t]λα[t][t]𝒮λ\sum_{[t]\in{\mathcal{M}}^{\lambda}}\alpha_{[t]}[t]\in{\mathcal{S}}^{\lambda}, for α[t]\alpha_{[t]}\in{\mathbb{C}}. Then, as 𝒮λ{\mathcal{S}}^{\lambda} is a subrepresentation σ[t]λα[t][t]𝒮λ\sigma\cdot\sum_{[t]\in{\mathcal{M}}^{\lambda}}\alpha_{[t]}[t]\in{\mathcal{S}}% ^{\lambda} and

T1(σ[t]λα[t][t])=T1(σα[t][t])=σT1(α[t][t])=σT1(α[t][t]),T_{1}(\sigma\cdot\sum_{[t]\in{\mathcal{M}}^{\lambda}}\alpha_{[t]}[t])=T_{1}^{% \prime}(\sigma\cdot\sum\alpha_{[t]}[t])=\sigma\cdot T_{1}^{\prime}(\sum\alpha_% {[t]}[t])=\sigma\cdot T_{1}(\sum\alpha_{[t]}[t]),

for all σSn1\sigma\in S_{n-1}. Thus T1T_{1} is a Sn1S_{n-1}-homomorphism. For the inductive step suppose Ti1T_{i-1} is an Sn1S_{n-1}-homomorphism and let [t]imλα[t][t]kerTi1\sum_{[t]{\mathrm{im}}{\mathcal{M}}^{\lambda}}\alpha_{[t]}[t]\in\ker T_{i-1}, for α[t]\alpha_{[t]}\in{\mathbb{C}}. Then, as kerTi1\ker T_{i-1} is a subrepresentation σ[t]imλα[t][t]𝒮λ\sigma\cdot\sum_{[t]{\mathrm{im}}{\mathcal{M}}^{\lambda}}\alpha_{[t]}[t]\in{% \mathcal{S}}^{\lambda} and

Ti(σ[t]imλα[t][t])=Ti(σα[t][t])=σTi(α[t][t])=σTi(α[t][t]),T_{i}(\sigma\cdot\sum_{[t]{\mathrm{im}}{\mathcal{M}}^{\lambda}}\alpha_{[t]}[t]% )=T_{i}^{\prime}(\sigma\cdot\sum\alpha_{[t]}[t])=\sigma\cdot T_{i}^{\prime}(% \sum\alpha_{[t]}[t])=\sigma\cdot T_{i}(\sum\alpha_{[t]}[t]),

for all σSn1\sigma\in S_{n-1}. Thus, by induction, TiT_{i} is an Sn1S_{n-1}-homomorphism for each ii.

Problem 102. Let (π,V)(\pi,V) and (ρ,W)(\rho,W) be two finite-dimensional representations of a group GG. Show that if THomG(V,W)T\in\operatorname{Hom}_{G}(V,W), then (ρ,im(T))(\rho,\mathrm{im}(T)) is a subrepresentation of (ρ,W)(\rho,W).

Solution: Let wim(T)w\in\mathrm{im}(T). We may therefore write w=Tvw=Tv for some vVv\in V. For any gGg\in G, we have

ρ(g)w=ρ(g)Tv=Tπ(g)vim(T),\rho(g)w=\rho(g)Tv=T\pi(g)v\in\mathrm{im}(T),

where we used that THomG(V,W)T\in\operatorname{Hom}_{G}(V,W) for the second equality. The above computation shows that im(T)\mathrm{im}(T) is ρ(G)\rho(G)- invariant, and thus (ρ,W)(\rho,W) is a subrepresentation of (ρ,W)(\rho,W).

Problem 103.

  1. (a)

    Let MGLn()M\in\mathrm{GL}_{n}(\mathbb{C}) be such that Md=IM^{d}=I for some dd\in\mathbb{N}. Show that MM is diagonalisable.

  2. (b)

    Let (π,V)(\pi,V) be a finite-dimensional representation of a finite group GG. Given gGg\in G, show that there is an eigenbasis for π(g)\pi(g).

Solution:

  1. (a)

    Since Md=IM^{d}=I, we have MdI=j=0d(Me2πij/dI)=0.M^{d}-I=\prod_{j=0}^{d}(M-e^{2\pi ij/d}I)=0. The minimal polynomial of MM must therefore divide j=0d(Me2πij/dI)\prod_{j=0}^{d}(M-e^{2\pi ij/d}I), and hence factors as a number of distinct linear factors Me2πij/dIM-e^{2\pi ij/d}I. This implies that MM is diagonalisable.

    Alternatively, write MM in Jordan normal form:

    M=Bdiag(Jk1(λ1),Jk2(λ2),Jkm(λm))B1,M=B\operatorname{diag}\big{(}J_{k_{1}}(\lambda_{1}),J_{k_{2}}(\lambda_{2}),% \ldots J_{k_{m}}(\lambda_{m})\big{)}B^{-1},

    where each Jk(λ)J_{k}(\lambda) is a k×kk\times k Jordan block:

    Jk(λ)=(λ10000λ1000000λ10000λ)J_{k}(\lambda)=\left(\begin{matrix}\lambda&1&0&0&\cdots&0\\ 0&\lambda&1&0&\cdots&0\\ \vdots&&\ddots&\ddots&&\vdots\\ 0&0&0&0&\cdots\lambda&1\\ 0&0&0&0&\cdots&\lambda\end{matrix}\right)

    Thus, taking the dd-th power, we have

    I=Md=Bdiag(Jk1(λ1)d,Jk2(λ2)d,Jkm(λm)d)B1.I=M^{d}=B\operatorname{diag}\big{(}J_{k_{1}}(\lambda_{1})^{d},J_{k_{2}}(% \lambda_{2})^{d},\ldots J_{k_{m}}(\lambda_{m})^{d}\big{)}B^{-1}.

    We must therefore have

    Jki(λi)d=IkiJ_{k_{i}}(\lambda_{i})^{d}=I_{k_{i}}

    for all i=1,,mi=1,\ldots,m. Writing Jk(λ)=λIk+Nk,J_{k}(\lambda)=\lambda I_{k}+N_{k}, where NkN_{k} is the k×kk\times k matrix with ones on the superdiagonal, and all other entries zero, we have

    Jk(λ)d=(λIk+Nk)d=λdIk+i=1d(ni)λdiNki.J_{k}(\lambda)^{d}=(\lambda I_{k}+N_{k})^{d}=\lambda^{d}I_{k}+\sum_{i=1}^{d}% \left(\begin{matrix}n\\ i\end{matrix}\right)\lambda^{d-i}N_{k}^{i}.

    Note now that NkiN_{k}^{i} has ones on the ii-th superdiagonal, and all other entries zero (and Nkk=0N_{k}^{k}=0). This means that NkN_{k} cannot be written as a linear combination of the other NkiN_{k}^{i}s; and so the only way for Jk(λ)d=IkJ_{k}(\lambda)^{d}=I_{k} to hold is if k=1k=1. If all Jordan blocks are 1×11\times 1 matrices then MM is diagonalisable.

  2. (b)

    then follows from (a) by choosing a basis {\mathcal{B}} of VV and considering the matrix of π(g)\pi(g) with respect to this basis. Since π(g)\pi(g) is of finite order, so is its matrix w.r.t. any choice of basis (cf. Problem 19), hence the matrix of π(g)\pi(g) is diagonalisable by part (a). Using the change of basis formula to change the basis {\mathcal{B}} to that basis given by the diagonalisation results in the claimed eigenbasis of π(g)\pi(g).

Problem 104. Use Lemma 14 (see Problem 25) and Corollary 7 (proved in Lecture 5) to prove the following:

Proposition 15. Let (π,V)(\pi,V) be a finite-dimensional representation of a finite group GG. For any irreducible representation (ρ,W)(\rho,W) of GG and any decomposition of (π,V)(\pi,V) into irreducible subrepresentations, the number of components in the decomposition that are isomorphic to (ρ,W)(\rho,W) is equal to dim(HomG(V,W))\operatorname{dim}\big{(}\operatorname{Hom}_{G}(V,W)\big{)}.

Why does this complete the proof of Theorem 13?

Solution: By the first part of Theorem 13, given a representation (π,V)(\pi,V), we may write it as a direct sum of irreducible subrepresentations:

(π,V)=(π,W1)(π,W2)(π,Wm),(\pi,V)=(\pi,W_{1})\oplus(\pi,W_{2})\ldots\oplus(\pi,W_{m}),

where each (π,Wi)(\pi,W_{i}) is irreducible. Given an irreducible representation (ρ,W)(\rho,W), we then have

HomG(V,W)=HomG(W1Wm,W)=HomG(W1,W)HomG(W2,W)HomG(Wm,W),\operatorname{Hom}_{G}(V,W)=\operatorname{Hom}_{G}(W_{1}\oplus\ldots\oplus W_{% m},W)=\operatorname{Hom}_{G}(W_{1},W)\oplus\operatorname{Hom}_{G}(W_{2},W)% \oplus\ldots\oplus\operatorname{Hom}_{G}(W_{m},W),

where Lemma 14 (i) was used for the second equality. Since the dimension of a direct sum is the sum of the dimensions, this gives

dimHomG(V,W)=idimHomG(Wi,W).\operatorname{dim}\operatorname{Hom}_{G}(V,W)=\sum_{i}\operatorname{dim}% \operatorname{Hom}_{G}(W_{i},W).

By Corollary 7, dim(HomG(Wi,W))=1\operatorname{dim}(\operatorname{Hom}_{G}(W_{i},W))=1 if (π,Wi)(ρ,W)(\pi,W_{i})\cong(\rho,W), and zero otherwise, hence

dimHomG(V,W)=#{1im:(π,Wi)(ρ,W)}.\operatorname{dim}\operatorname{Hom}_{G}(V,W)=\#\big{\{}1\leq i\leq m\,:\,(\pi% ,W_{i})\cong(\rho,W)\big{\}}.

This proves the proposition. The last part of Theorem 13 follows since the right-hand side of the above equation is independent of the choice of decomposition of (π,V)(\pi,V) into irreducible subrepresentations.

The following problems give an alternative proof of Maschke’s Theorem (Theorem 10): Recall that an inner product ,\langle\cdot,\cdot\rangle on a vector space VV is a map V×VV\times V\rightarrow{\mathbb{C}} such that

  1. (i)

    v,w=w,v¯\langle v,w\rangle=\overline{\langle w,v\rangle} for all v,wVv,w\in V (conjugate symmetry).

  2. (ii)

    αu+βv,w=αu,w+βv,w\langle\alpha u+\beta v,w\rangle=\alpha\langle u,w\rangle+\beta\langle v,w\rangle for all α,β\alpha,\beta\in{\mathbb{C}}, u,v,wVu,v,w\in V (linearity in the first argument).

  3. (iii)

    v,v>0\langle v,v\rangle>0 if v0v\neq 0 (positive-definiteness).

Recall that the standard example on n{\mathbb{C}}^{n} is as follows:

i=1nxi𝐞i,j=1nyj𝐞j:=i=1nxiyi¯.\left\langle\sum_{i=1}^{n}x_{i}{\bf e}_{i},\sum_{j=1}^{n}y_{j}{\bf e}_{j}% \right\rangle:=\sum_{i=1}^{n}x_{i}\overline{y_{i}}.

Problem 105. Let VV be a finite-dimensional vector space. Show that there exists an inner product ,\langle\cdot,\cdot\rangle on VV.

Solution: Let {vi}i=1,,dimV\{v_{i}\}_{i=1,\ldots,\operatorname{dim}V} be any basis of VV. We define ,:V×V\langle\cdot,\cdot\rangle:V\times V\rightarrow{\mathbb{C}} by

i=1dimVaivi,j=1dimVbjvj:=i=1naibi¯.\left\langle\sum_{i=1}^{\operatorname{dim}V}a_{i}v_{i},\sum_{j=1}^{% \operatorname{dim}V}b_{j}v_{j}\right\rangle:=\sum_{i=1}^{n}a_{i}\overline{b_{i% }}.

This is well-defined due to {vi}i=1,,dimV\{v_{i}\}_{i=1,\ldots,\operatorname{dim}V} being a basis: any pair of vectors in VV can be written in a unique way as a linear combination of the viv_{i}s.

It remains to verify that this is indeed an inner product:

  1. (i)
    i=1dimVaivi,j=1dimVbjvj=i=1naibi¯=i=1nbiai¯¯=j=1dimVbjvj,i=1dimVaivi¯.\left\langle\sum_{i=1}^{\operatorname{dim}V}a_{i}v_{i},\sum_{j=1}^{% \operatorname{dim}V}b_{j}v_{j}\right\rangle=\sum_{i=1}^{n}a_{i}\overline{b_{i}% }=\overline{\sum_{i=1}^{n}b_{i}\overline{a_{i}}}=\overline{\left\langle\sum_{j% =1}^{\operatorname{dim}V}b_{j}v_{j},\sum_{i=1}^{\operatorname{dim}V}a_{i}v_{i}% \right\rangle}.
  2. (ii)
    αi=1dimVaivi+βj=1dimVbjvj,k=1dimVckvk=i=1dimV(αai+βbi)vi,k=1dimVckvk=i=1dimV(αai+βbi)ci¯\displaystyle\left\langle\alpha\sum_{i=1}^{\operatorname{dim}V}a_{i}v_{i}+% \beta\sum_{j=1}^{\operatorname{dim}V}b_{j}v_{j},\sum_{k=1}^{\operatorname{dim}% V}c_{k}v_{k}\right\rangle=\left\langle\sum_{i=1}^{\operatorname{dim}V}(\alpha a% _{i}+\beta b_{i})v_{i},\sum_{k=1}^{\operatorname{dim}V}c_{k}v_{k}\right\rangle% =\sum_{i=1}^{\operatorname{dim}V}(\alpha a_{i}+\beta b_{i})\overline{c_{i}}
    =αi=1dimVaici¯+βi=1dimVbici¯=ααi=1dimVaivi,k=1dimVckvk+β+βj=1dimVbjvj,k=1dimVckvk.\displaystyle=\alpha\sum_{i=1}^{\operatorname{dim}V}a_{i}\overline{c_{i}}+% \beta\sum_{i=1}^{\operatorname{dim}V}b_{i}\overline{c_{i}}=\alpha\left\langle% \alpha\sum_{i=1}^{\operatorname{dim}V}a_{i}v_{i},\sum_{k=1}^{\operatorname{dim% }V}c_{k}v_{k}\right\rangle+\beta\left\langle+\beta\sum_{j=1}^{\operatorname{% dim}V}b_{j}v_{j},\sum_{k=1}^{\operatorname{dim}V}c_{k}v_{k}\right\rangle.
  3. (iii)
    i=1dimVaivi,j=1dimVajvj=i=1dimVaiai¯=i=1dimV|ai|20,\left\langle\sum_{i=1}^{\operatorname{dim}V}a_{i}v_{i},\sum_{j=1}^{% \operatorname{dim}V}a_{j}v_{j}\right\rangle=\sum_{i=1}^{\operatorname{dim}V}a_% {i}\overline{a_{i}}=\sum_{i=1}^{\operatorname{dim}V}|a_{i}|^{2}\geq 0,

    with equality if and only if all aia_{i} are zero, i.e. i=1dimVaivi=0\sum_{i=1}^{\operatorname{dim}V}a_{i}v_{i}=0.

Problem 106. Given a finite-dimensional representation (π,V)(\pi,V) of a finite group GG, and an inner product ,\langle\cdot,\cdot\rangle on VV, show that ,G\langle\cdot,\cdot\rangle_{G} defined through

v,wG:=1|G|gGπ(g)v,π(g)wv,wV\langle v,w\rangle_{G}:=\frac{1}{|G|}\sum_{g\in G}\langle\pi(g)v,\pi(g)w% \rangle\qquad\forall\,v,w\in V

is an inner product.

Solution: We verify that ,G\langle\cdot,\cdot\rangle_{G} is an inner product:

  1. (i)
    v,wG=1|G|gGπ(g)v,π(g)w=1|G|gGπ(g)w,π(g)v¯=1|G|gGπ(g)w,π(g)v¯=w,vG¯.\langle v,w\rangle_{G}=\frac{1}{|G|}\sum_{g\in G}\langle\pi(g)v,\pi(g)w\rangle% =\frac{1}{|G|}\sum_{g\in G}\overline{\langle\pi(g)w,\pi(g)v\rangle}=\overline{% \frac{1}{|G|}\sum_{g\in G}\langle\pi(g)w,\pi(g)v\rangle}=\overline{\langle w,v% \rangle_{G}}.
  2. (ii)
    αu+βv,wG=1|G|gGπ(g)(αu+βv),π(g)w=1|G|gGαπ(g)u,π(g)w+βπ(g)v,π(g)w\displaystyle\left\langle\alpha u+\beta v,w\right\rangle_{G}=\frac{1}{|G|}\sum% _{g\in G}\langle\pi(g)(\alpha u+\beta v),\pi(g)w\rangle=\frac{1}{|G|}\sum_{g% \in G}\alpha\langle\pi(g)u,\pi(g)w\rangle+\beta\langle\pi(g)v,\pi(g)w\rangle
    =α1|G|gGπ(g)u,π(g)w+β1|G|gGπ(g)v,π(g)w=αu,w+βv,w.\displaystyle=\alpha\frac{1}{|G|}\sum_{g\in G}\langle\pi(g)u,\pi(g)w\rangle+% \beta\frac{1}{|G|}\sum_{g\in G}\langle\pi(g)v,\pi(g)w\rangle=\alpha\langle u,w% \rangle+\beta\langle v,w\rangle.
  3. (iii)
    v,vG=1|G|gGπ(g)v,π(g)v.\langle v,v\rangle_{G}=\frac{1}{|G|}\sum_{g\in G}\langle\pi(g)v,\pi(g)v\rangle.

    For each gGg\in G, we have π(g)v,π(g)0\langle\pi(g)v,\pi(g)\rangle\geq 0 (since ,\langle\cdot,\cdot\rangle is an inner product). Each π(g)\pi(g) is invertible, so π(g)v=0\pi(g)v=0 if and only if v=0v=0, hence

    1|G|gGπ(g)v,π(g)v0,\frac{1}{|G|}\sum_{g\in G}\langle\pi(g)v,\pi(g)v\rangle\geq 0,

    as the sum of a collection of non-negative numbers is non-negative, and equality is obtained if and only if v=0v=0.

Letting (π,V)(\pi,V), GG, and ,G\langle\cdot,\cdot\rangle_{G} be as in Problem 28, show

Problem 107. π(g)v,π(g)wG=v,wG\langle\pi(g)v,\pi(g)w\rangle_{G}=\langle v,w\rangle_{G} for all gGg\in G, v,wVv,w\in V.

Solution:

π(g)v,π(g)wG=1|G|gGπ(h)π(g)v,π(h)π(g)w=1|G|gGπ(hg)v,π(hg)w\displaystyle\langle\pi(g)v,\pi(g)w\rangle_{G}=\frac{1}{|G|}\sum_{g\in G}% \langle\pi(h)\pi(g)v,\pi(h)\pi(g)w\rangle=\frac{1}{|G|}\sum_{g\in G}\langle\pi% (hg)v,\pi(hg)w\rangle
=h~=hg1|G|h~Gπ(h~)v,π(h~)w=v,uG.\displaystyle\underset{\widetilde{h}=hg}{=}\frac{1}{|G|}\sum_{\widetilde{h}\in G% }\langle\pi(\widetilde{h})v,\pi(\widetilde{h})w\rangle=\langle v,u\rangle_{G}.

Problem 108. If (π,W)(\pi,W) is a subrepresentation of (π,V)(\pi,V), then (π,W)(\pi,W^{\perp}) is, as well, where

W:={vV:v,wG=0wW}.W^{\perp}:=\left\{v\in V\,:\,\langle v,w\rangle_{G}=0\quad\forall\,w\in W% \right\}.

Recalling that V=WWV=W\oplus W^{\perp}, this shows that (π,V)=(π,W)(π,W)(\pi,V)=(\pi,W)\oplus(\pi,W^{\perp}), proving Theorem 10!

Solution: Given any uWu\in W^{\perp} and gGg\in G, we need to show that π(g)uW\pi(g)u\in W^{\perp}. For any wWw\in W, we have

w,π(g)uG=π(g1)w,π(g1)π(g)uG=π(g1)w,uG.\langle w,\pi(g)u\rangle_{G}=\langle\pi(g^{-1})w,\pi(g^{-1})\pi(g)u\rangle_{G}% =\langle\pi(g^{-1})w,u\rangle_{G}.

Since WW is a subrepresentation, π(g1)wW\pi(g^{-1})w\in W. By assumption, uWu\in W^{\perp}, hence π(g1)w,uG=0\langle\pi(g^{-1})w,u\rangle_{G}=0, giving

w,π(g)uG=0wW,gG,\langle w,\pi(g)u\rangle_{G}=0\qquad\forall w\in W,\,g\in G,

hence π(g)uW\pi(g)u\in W^{\perp}.

Problem 109. Let {𝐛i}i=1,,dim(V)\{{\bf b}_{i}\}_{i=1,\ldots,\operatorname{dim}(V)} be an orthonormal basis of VV with respect to ,G\langle\cdot,\cdot\rangle_{G} (i.e. 𝐛i,𝐛j\langle{\bf b}_{i},{\bf b}_{j}\rangle equals one if i=ji=j and zero otherwise). Show that the matrix representation of π\pi with respect to this basis satisfies

π(g1)=π(g)gG.\pi(g^{-1})=\pi(g)^{*}\qquad\forall g\in G.

(Here MM^{*} denotes the conjugate transpose of the matrix MM.) Conclude that the matrix of π(g)\pi(g) is unitary. Use the spectral theorem to give an alternative solution to Problem 14 (a)!

Remark: a representation of (π,V)(\pi,V) of a group GG on an inner product space VV (with inner product ,\langle\cdot,\cdot\rangle) is called unitary if π(g)v,π(g)w=v,w\langle\pi(g)v,\pi(g)w\rangle=\langle v,w\rangle for all gG,v,wVg\in G,\,v,w\in V. Problem 28 shows that we may always assume that a finite-dimensional representation of a finite group is unitary.

Solution: Since the 𝐛i{\bf b}_{i} form an ON-basis, the matrix of π(g1)\pi(g^{-1}) with respect to this basis is given by the formula

[π(g1)]=(π(g1)𝐛j,𝐛iG)i,j[\pi(g^{-1})]_{{\mathcal{B}}}=\big{(}\langle\pi(g^{-1}){\bf b}_{j},{\bf b}_{i}% \rangle_{G}\big{)}_{i,j}

(here ii runs through the rows, and jj the columns). The conjugate transpose of this matrix is then given by the formula

[π(g1)]=(π(g1)𝐛j,𝐛iG¯)j,i=(𝐛i,π(g1)𝐛jG)j,i=(π(g)𝐛i,π(g)π(g1)𝐛jG)j,i=(π(g)𝐛i,𝐛jG)j,i,[\pi(g^{-1})]_{{\mathcal{B}}}^{*}=\big{(}\overline{\langle\pi(g^{-1}){\bf b}_{% j},{\bf b}_{i}\rangle_{G}}\big{)}_{j,i}=\big{(}\langle{\bf b}_{i},\pi(g^{-1}){% \bf b}_{j}\rangle_{G}\big{)}_{j,i}=\big{(}\langle\pi(g){\bf b}_{i},\pi(g)\pi(g% ^{-1}){\bf b}_{j}\rangle_{G}\big{)}_{j,i}=\big{(}\langle\pi(g){\bf b}_{i},{\bf b% }_{j}\rangle_{G}\big{)}_{j,i},

which is precisely the formula for [π(g)][\pi(g)]_{{\mathcal{B}}}. We have thus shown that

[π(g)]=[π(g1)].[\pi(g)]_{{\mathcal{B}}}=[\pi(g^{-1})]_{{\mathcal{B}}}^{*}.

Taking the conjugate transpose of both sides, together with the identity (M)=M(M^{*})^{*}=M gives that π(g)\pi(g) is unitary.

This problem gives an alternative way to show that a finite-order matrix MGLn()M\in\operatorname{GL}_{n}({\mathbb{C}}) (say, of order dd) is diagonalisable: consider the finite group M={I,M,M2,,Md1}\langle M\rangle=\{I,M,M^{2},\ldots,M^{d-1}\}. Form a new invariant inner product ,M\langle\cdot,\cdot\rangle_{M} on n{\mathbb{C}}^{n} by

u,vM=d1(u,v+Mu,Mv+M2u,M2v++Md1u,Md1v)u,vn.\langle u,v\rangle_{M}=d^{-1}\big{(}\langle u,v\rangle+\langle Mu,Mv\rangle+% \langle M^{2}u,M^{2}v\rangle+\ldots+\langle M^{d-1}u,M^{d-1}v\rangle\big{)}% \qquad\forall\,u,v\in{\mathbb{C}}^{n}.

As seen above, choosing an orthonormal basis {\mathcal{B}} of n{\mathbb{C}}^{n} with respect to ,M\langle\cdot,\cdot\rangle_{M}, and using the change of basis formula to compute the matrix of vMvv\mapsto Mv with respect to this basis gives a unitary matrix [M][M]_{{\mathcal{B}}}. The spectral theorem applies to unitary matrices, allowing us to write [M]=Bdiag(λ1,,λn)B1,[M]_{{\mathcal{B}}}=B\operatorname{diag}(\lambda_{1},\ldots,\lambda_{n})B^{-1}, and then M=[]Bdiag(λ1,,λn)B1[]1M=[{\mathcal{B}}]B\operatorname{diag}(\lambda_{1},\ldots,\lambda_{n})B^{-1}[{% \mathcal{B}}]^{-1}.

Problem 110. In lecture 4 we showed that any irreducible representation of DnD_{n} (nn odd) must have π(r)\pi(r) and π(s)\pi(s) as given in the table below:

Rep dim\operatorname{dim} π(r)\pi(r) π(s)\pi(s)
Id{\,\mathrm{Id}} 1 1 1
ϵ\epsilon 1 1 -1
(ρk,2)(\rho_{k},{\mathbb{C}}^{2}), 1k<n21\leq k<\frac{n}{2} 2 (e2πik/n00e2πik/n)\left(\begin{smallmatrix}e^{2\pi ik/n}&0\\ 0&e^{-2\pi ik/n}\end{smallmatrix}\right) (0110)\left(\begin{smallmatrix}0&1\\ 1&0\end{smallmatrix}\right)

Use Theorem 16 (ii) to verify that the table contains no redundancies, and that every entry must in fact define a representation of DnD_{n}.

Solution: By Theorem 16 (ii), σIrr(Dn)(dimσ)2=|Dn|=2n\sum_{\sigma\in\mathrm{Irr}(D_{n})}(\operatorname{dim}\sigma)^{2}=|D_{n}|=2n. Summing the dimensions squared of the entries of the table gives 12+12+22(n1)2=2n.1^{2}+1^{2}+2^{2}\cdot\frac{(n-1)}{2}=2n. Since we proved in class that any irreducible representation of DnD_{n} must have π(r)\pi(r) and π(s)\pi(s) as given by the table. If any of the entries of the table were isomorphic, or were not legitimate representations, we would be able to remove these from the list to obtain a new list that had precisely one representative from each isomorphism class of each irreducible representation. However, the sums of squares of dimensions of this new list could not possibly be equal to 2n2n, as it was obtained by removing entries from our current list. Thus it is not possible to remove any entries of our table and still have a representative of each isomorphism class.

Problem 111. Let (π,V)(\pi,V) be a representation of a subgroup H<GH<G, (IndHGπ,W)(\mathrm{Ind}_{H}^{G}\pi,W) the induced representation of π\pi from HH to GG, and (ρ,U)(\rho,U) a representation of GG. Given THomG(W,U)T\in\operatorname{Hom}_{G}(W,U), define THom(V,U)T^{\prime}\in\operatorname{Hom}(V,U) by

T(v)=ρ(ri01)T(ri0v)vV,T^{\prime}(v)=\rho(r_{i_{0}}^{-1})T(r_{i_{0}}v)\qquad\forall\,v\in V,

where ri0Gr_{i_{0}}\in G is the representative such that eri0He\in r_{i_{0}}H. Show that TTT\mapsto T^{\prime} is a linear map from HomG(W,U)\operatorname{Hom}_{G}(W,U) to HomH(V,U)\operatorname{Hom}_{H}(V,U).

Solution: We first verify that TT^{\prime} is a linear operator: for α,β\alpha,\beta\in{\mathbb{C}} and v1,v2Vv_{1},v_{2}\in V,

T(αv1+βv2)=\displaystyle T^{\prime}(\alpha v_{1}+\beta v_{2})= ρ(r01)T(ri0(αv1+βv2))=ρ(r01)T(αri0v1+βri0v2)=ρ(ri01)(αT(ri0v1)+βT(ri0v2))\displaystyle\rho(r_{0}^{-1})T\big{(}r_{i_{0}}(\alpha v_{1}+\beta v_{2})\big{)% }=\rho(r_{0}^{-1})T\big{(}\alpha r_{i_{0}}v_{1}+\beta r_{i_{0}}v_{2}\big{)}=% \rho(r_{i_{0}}^{-1})\big{(}\alpha T(r_{i_{0}}v_{1})+\beta T(r_{i_{0}}v_{2})% \big{)}
=αρ(ri01)T(ri0v1)+βρ(ri01)T(ri0v2)=αT(v1)+βT(v2),\displaystyle=\alpha\rho(r_{i_{0}}^{-1})T(r_{i_{0}}v_{1})+\beta\rho(r_{i_{0}}^% {-1})T(r_{i_{0}}v_{2})=\alpha T^{\prime}(v_{1})+\beta T^{\prime}(v_{2}),

hence THom(V,U)T^{\prime}\in\operatorname{Hom}(V,U). We next observe that for S,THom(W,U)S,T\in\operatorname{Hom}(W,U) and α,β\alpha,\beta\in{\mathbb{C}}, and vVv\in V we have

(αS+βT)(v)=ρ(ri01)(αS+βT)(ri0v)=ρ(ri01)(αS(ri0v)+βT(ri0v))=αS(v)+βT(v),(\alpha S+\beta T)^{\prime}(v)=\rho(r_{i_{0}}^{-1})(\alpha S+\beta T)(r_{i_{0}% }v)=\rho(r_{i_{0}}^{-1})\big{(}\alpha S(r_{i_{0}}v)+\beta T(r_{i_{0}}v)\big{)}% =\alpha S^{\prime}(v)+\beta T^{\prime}(v),

hence TTT\mapsto T^{\prime} is a linear map from Hom(W,U)\operatorname{Hom}(W,U) to Hom(V,U)\operatorname{Hom}(V,U). We now verify that this map sends HomG(W,U)\operatorname{Hom}_{G}(W,U) to HomH(V,U)\operatorname{Hom}_{H}(V,U): let THomG(W,U)T\in\operatorname{Hom}_{G}(W,U). Then for any hHh\in H and vVv\in V, we have

T(π(h)v)=\displaystyle T^{\prime}(\pi(h)v)= ρ(ri01)T(ri0π(h)v)=ρ(ri01)T(IndHGπ(ri0hri01)ri0v)\displaystyle\rho(r_{i_{0}}^{-1})T(r_{i_{0}}\pi(h)v)=\rho(r_{i_{0}}^{-1})T\big% {(}\mathrm{Ind}_{H}^{G}\pi\big{(}r_{i_{0}}hr_{i_{0}}^{-1})r_{i_{0}}v\big{)}
=ρ(ri01)ρ(ri0hri01)T(ri0v)=ρ(h)ρ(ri01)T(ri0v)=ρ(h)T(v),\displaystyle=\rho(r_{i_{0}}^{-1})\rho\big{(}r_{i_{0}}hr_{i_{0}}^{-1}\big{)}T(% r_{i_{0}}v)=\rho(h)\rho(r_{i_{0}}^{-1})T(r_{i_{0}}v)=\rho(h)T^{\prime}(v),

i.e. TT^{\prime} is an HH-intertwiner, as required.

Problem 112. Show that π(σ)𝐞t=𝐞σt\pi(\sigma)\mathbf{e}_{t}=\mathbf{e}_{\sigma\cdot t}, where 𝐞t\mathbf{e}_{t} is the polytabloid

𝐞t=σC(t)sgn(σ)[σt].\mathbf{e}_{t}=\sum_{\sigma\in C(t)}\operatorname{sgn}(\sigma)\,\cdot[\sigma% \cdot t].

Use this to conclude that (π,𝒮λ)(\pi,{\mathcal{S}}^{\lambda}) is a subrepresentation of (π,λ)(\pi,{\mathcal{M}}^{\lambda}).

Solution: We have

π(σ)𝐞t=τC(t)sgn(τ)σ[τt]=τC(t)sgn(τ)[στσ1(σt)].\pi(\sigma)\mathbf{e}_{t}=\sum_{\tau\in C(t)}\mathrm{sgn}(\tau)\cdot\sigma% \cdot[\tau\cdot t]=\sum_{\tau\in C(t)}\mathrm{sgn}(\tau)\cdot[\sigma\tau\sigma% ^{-1}\cdot(\sigma\cdot t)].

Using Problem 79, we may rewrite this as follows:

π(σ)𝐞t=τC(σt)sgn(σ1τσ)[τ(σt)]=τC(σt)sgn(τ)[τ(σt)]=𝐞σt.\pi(\sigma)\mathbf{e}_{t}=\sum_{\tau\in C(\sigma\cdot t)}\mathrm{sgn}(\sigma^{% -1}\tau\sigma)\cdot[\tau\cdot(\sigma\cdot t)]=\sum_{\tau\in C(\sigma\cdot t)}% \mathrm{sgn}(\tau)\cdot[\tau\cdot(\sigma\cdot t)]=\mathbf{e}_{\sigma\cdot t}.

This shows that for each polytabloid tt and permutation σ\sigma, π(σ)𝐞t=𝐞σt𝒮λ\pi(\sigma)\mathbf{e}_{t}=\mathbf{e}_{\sigma\cdot t}\in{\mathcal{S}}^{\lambda}. The vectors 𝐞t\mathbf{e}_{t} span 𝒮λ{\mathcal{S}}^{\lambda}, hence 𝒮λ{\mathcal{S}}^{\lambda} is closed under the action of SnS_{n}, and is therefore a subrepresentation.

Problem 113. Show that (π,λ)(\pi,{\mathcal{M}}^{\lambda}) is a unitary representation of SnS_{n} with respect to the inner product

[t]𝐘𝐓𝐃λz[t][t],[s]𝐘𝐓𝐃λw[s][s]:=[t]𝐘𝐓𝐃λz[t]w[t]¯.\left\langle\sum_{[t]\in\mathbf{YTD}^{\lambda}}z_{[t]}\cdot[t],\sum_{[s]\in% \mathbf{YTD}^{\lambda}}w_{[s]}\cdot[s]\right\rangle:=\sum_{[t]\in\mathbf{YTD}^% {\lambda}}z_{[t]}\overline{w_{[t]}}.

Solution: Since each σSn\sigma\in S_{n} acts as a bijection on 𝐘𝐓𝐃λ\mathbf{YTD}^{\lambda}, we have

π(σ)[t]𝐘𝐓𝐃λz[t][t]=[t]𝐘𝐓𝐃λz[t][σt]=[t]𝐘𝐓𝐃λz[σ1t][t].\pi(\sigma)\sum_{[t]\in\mathbf{YTD}^{\lambda}}z_{[t]}\cdot[t]=\sum_{[t]\in% \mathbf{YTD}^{\lambda}}z_{[t]}\cdot[\sigma\cdot t]=\sum_{[t]\in\mathbf{YTD}^{% \lambda}}z_{[\sigma^{-1}\cdot t]}\cdot[t].

This gives

π(σ)[t]𝐘𝐓𝐃λz[t][t],π(σ)[s]𝐘𝐓𝐃λw[s][s]=[t]𝐘𝐓𝐃λz[σ1t][t],[s]𝐘𝐓𝐃λw[σ1s][s]\displaystyle\left\langle\pi(\sigma)\sum_{[t]\in\mathbf{YTD}^{\lambda}}z_{[t]}% \cdot[t],\pi(\sigma)\sum_{[s]\in\mathbf{YTD}^{\lambda}}w_{[s]}\cdot[s]\right% \rangle=\left\langle\sum_{[t]\in\mathbf{YTD}^{\lambda}}z_{[\sigma^{-1}t]}\cdot% [t],\sum_{[s]\in\mathbf{YTD}^{\lambda}}w_{[\sigma^{-1}\cdot s]}\cdot[s]\right\rangle
=[t]𝐘𝐓𝐃λz[σ1t]w[σ1t]¯=[t]𝐘𝐓𝐃λz[t]w[t]¯=[t]𝐘𝐓𝐃λz[t][t],[s]𝐘𝐓𝐃λw[s][s],\displaystyle=\sum_{[t]\in\mathbf{YTD}^{\lambda}}z_{[\sigma^{-1}\cdot t]}% \overline{w_{[\sigma^{-1}\cdot t]}}=\sum_{[t]\in\mathbf{YTD}^{\lambda}}z_{[t]}% \overline{w_{[t]}}=\left\langle\sum_{[t]\in\mathbf{YTD}^{\lambda}}z_{[t]}\cdot% [t],\sum_{[s]\in\mathbf{YTD}^{\lambda}}w_{[s]}\cdot[s]\right\rangle,

as desired.

Problem 114. Given t𝐘𝐓λt\in\mathbf{YT}^{\lambda}, define Pt:λλP_{t}:{\mathcal{M}}^{\lambda}\rightarrow{\mathcal{M}}^{\lambda} by

Pt=σC(t)sgn(σ)π(σ).P_{t}=\sum_{\sigma\in C(t)}\operatorname{sgn}(\sigma)\cdot\pi(\sigma).

Show that PtP_{t} is self-adjoint with respect to ,\langle\cdot,\cdot\rangle, i.e.

Ptu,v=u,Ptvu,vλ.\langle P_{t}u,v\rangle=\langle u,P_{t}v\rangle\qquad\forall u,v\in{\mathcal{M% }}^{\lambda}.

Solution: Since {[s]}s𝐘𝐓𝐃λ\{[s]\}_{s\in\mathbf{YTD}^{\lambda}} spans λ{\mathcal{M}}^{\lambda}, by linearity it suffices to show that Pt[s],[r]=[s],Pt[r]\langle P_{t}[s],[r]\rangle=\langle[s],P_{t}[r]\rangle for all r,s,t𝐘𝐓λr,s,t\in\mathbf{YT}^{\lambda}. By the definition of PtP_{t} and Problem 80, we then have

Pt[s],[r]=\displaystyle\langle P_{t}[s],[r]\rangle= σC(t)sgn(σ)π(σ)[s],[r]=σC(t)sgn(σ)[s],π(σ1)[r]\displaystyle\sum_{\sigma\in C(t)}\mathrm{sgn}(\sigma)\langle\pi(\sigma)[s],[r% ]\rangle=\sum_{\sigma\in C(t)}\mathrm{sgn}(\sigma)\langle[s],\pi(\sigma^{-1})[% r]\rangle
=σC(t)sgn(σ1)[s],π(σ1)[r]=σ1C(t)[s],sgn(σ)π(σ)[r]\displaystyle=\sum_{\sigma\in C(t)}\mathrm{sgn}(\sigma^{-1})\langle[s],\pi(% \sigma^{-1})[r]\rangle=\sum_{\sigma^{-1}\in C(t)}\langle[s],\mathrm{sgn}(% \sigma)\pi(\sigma)[r]\rangle
=σC(t)[s],sgn(σ)π(σ)[r]=[s],Pt[r];\displaystyle=\sum_{\sigma\in C(t)}\langle[s],\mathrm{sgn}(\sigma)\pi(\sigma)[% r]\rangle=\langle[s],P_{t}[r]\rangle;

the second to last equality holding since C(t)C(t) is a subgroup of SnS_{n}.

Problem 115. (Challenging!) Given t𝐘𝐓λt\in\mathbf{YT}^{\lambda}, show that

Ptu𝐞tP_{t}u\in{\mathbb{C}}\mathbf{e}_{t}

for all uλu\in{\mathcal{M}}^{\lambda}. Hint: consider Pt[s]P_{t}[s] for some [s]𝐘𝐓𝐃λ[s]\in\mathbf{YTD}^{\lambda}. Split into two cases: (i) [s][s] has the numbers i,ji,\,j in some row and tt has i,ji,\,j in some column. Break the sum over C(t)C(t) into a sum over cosets in C(t)C(t) of {e,(ij)}\{e,(i\;j)\}. Show that in this case Pt[s]=0P_{t}[s]=0. (ii) All pairs of numbers in the rows of [s][s] lie in different columns of tt. Find σC(t)\sigma\in C(t) so that [σs]=[t][\sigma\cdot s]=[t], and hence Pt[s]=sgn(σ)𝐞tP_{t}[s]=\operatorname{sgn}(\sigma)\mathbf{e}_{t}.

Solution: Following the hint: let ss be such that [s][s] has the numbers i,ji,j in a single row, and tt has i,ji,j in a single column. By the definition of C(t)C(t), we have (ij)C(t)(i\;j)\in C(t). Let H=(ij)={e,(ij)}H=\langle(i\;j)\rangle=\{e,(i\;j)\}. We now let r1,,rmC(t)r_{1},\ldots,r_{m}\in C(t) be a set of representatives for C(t)/HC(t)/H, i.e.

C(t)=r1Hr2HrmH.C(t)=r_{1}H\sqcup r_{2}H\sqcup\ldots\sqcup r_{m}H.

Since [s][s] has ii and jj in the same row, π(ij)[s]=[(ij)s]=[s]\pi(i\;j)[s]=[(i\;j)\cdot s]=[s]. We can now compute:

Pt[s]=σC(t)sgn(σ)π(σ)[s]=\displaystyle P_{t}[s]=\sum_{\sigma\in C(t)}\mathrm{sgn}(\sigma)\pi(\sigma)[s]= l=1msgn(rl)π(rl)(sgn(e)π(e)+sgn(ij)π(ij))[s]\displaystyle\sum_{l=1}^{m}\mathrm{sgn}(r_{l})\pi(r_{l})\big{(}\mathrm{sgn}(e)% \pi(e)+\mathrm{sgn}(i\;j)\pi(i\;j)\big{)}[s]
=l=1msgn(rl)π(rl)(1+(1))[s]=0.\displaystyle=\sum_{l=1}^{m}\mathrm{sgn}(r_{l})\pi(r_{l})\big{(}1+(-1)\big{)}[% s]=0.

We now consider the remaining case, i.e. for any pair of numbers i,ji,j in a single column of tt, ii and jj are in different rows of [s][s]. Letting the first column of tt be a1,1,a1,2,,a1,Ma_{1,1},a_{1,2},\ldots,a_{1,M}, we let σ1C(t)\sigma_{1}\in C(t) be a permutation that moves each a1,ia_{1,i} into the row that it is in in [s][s], and fixes all other elements. Similarly, let σ2\sigma_{2} be a permutation that permutes the elements of the second column into the rows they occupy in [s][s], σ3\sigma_{3} a permutation of the third column of tt, and so on. Then [σlσ2σ1t]=[s][\sigma_{l}\ldots\sigma_{2}\sigma_{1}\cdot t]=[s], and since each σi\sigma_{i} is just a permutation of column entries, σ~=σlσ2σ1C(t)\widetilde{\sigma}=\sigma_{l}\ldots\sigma_{2}\sigma_{1}\in C(t). We now compute

Pt[s]=σC(t)sgn(σ)[σs]=σC(t)sgn(σ)[σσ~t]=σC(t)sgn(σσ~1)[σt]=sgn(σ~)𝐞t.\displaystyle P_{t}[s]=\sum_{\sigma\in C(t)}\mathrm{sgn}(\sigma)[\sigma\cdot s% ]=\sum_{\sigma\in C(t)}\mathrm{sgn}(\sigma)[\sigma\widetilde{\sigma}\cdot t]=% \sum_{\sigma\in C(t)}\mathrm{sgn}(\sigma\widetilde{\sigma}^{-1})[\sigma\cdot t% ]=\mathrm{sgn}(\widetilde{\sigma})\mathbf{e}_{t}.

Problem 116. Let (π,W)(\pi,W) be a subrepresentation of (π,λ)(\pi,{\mathcal{M}}^{\lambda}). Using Problem 82, show that if there exists t𝐘𝐓λt\in\mathbf{YT}^{\lambda} and wWw\in W such that Ptw0P_{t}w\neq 0, then 𝒮λW{\mathcal{S}}^{\lambda}\subset W.

Solution: Since PtP_{t} is a linear combination of operators π(g)\pi(g) (gSng\in S_{n}), and WW is a subrepresentation of (π,λ)(\pi,{\mathcal{M}}^{\lambda}), PtwWP_{t}w\in W for all t𝐘𝐓λt\in\mathbf{YT}^{\lambda} and wWw\in W. By Problem 82, Ptw=λ𝐞tP_{t}w=\lambda\mathbf{e}_{t} for some λ\lambda\in\mathbb{C}. If ww and tt (as above) are such that Ptw0P_{t}w\neq 0, then 𝐞tW\mathbb{C}\mathbf{e}_{t}\subset W. Again using the fact that WW is a subrepresentation, we then have that span{π(σ)𝐞t:σSn}W\mathrm{span}\{\pi(\sigma)\mathbf{e}_{t}\,:\,\sigma\in S_{n}\}\subset W. But by definition, 𝒮λ=span{π(σ)𝐞t:σSn}{\mathcal{S}}^{\lambda}=\mathrm{span}\{\pi(\sigma)\mathbf{e}_{t}\,:\,\sigma\in S% _{n}\}.

Problem 117. Let (π,W)(\pi,W) be a subrepresentation of (π,λ)(\pi,{\mathcal{M}}^{\lambda}). Using Problem 81, show that if Ptw=0P_{t}w=0 for all wWw\in W and t𝐘𝐓λt\in\mathbf{YT}^{\lambda}, then W(𝒮λ)W\subset({\mathcal{S}}^{\lambda})^{\perp}.

Solution: The vectors {𝐞t}\{\mathbf{e}_{t}\} span 𝒮λ{\mathcal{S}}^{\lambda}, so in order to show that W(𝒮λ)W\subset({\mathcal{S}}^{\lambda})^{\perp} (under the assumption Ptw=0P_{t}w=0 for all ww and tt), it suffices to show that w,𝐞t=0\langle w,\mathbf{e}_{t}\rangle=0. Using the definition of 𝐞t\mathbf{e}_{t}, we have 𝐞t=Pt[t]\mathbf{e}_{t}=P_{t}[t], hence by Problem 81,

w,𝐞t=w,Pt[t]=Ptw,𝐞t=0.\langle w,\mathbf{e}_{t}\rangle=\langle w,P_{t}[t]\rangle=\langle P_{t}w,% \mathbf{e}_{t}\rangle=0.

Problem 118. Use Problems 83 and 84 to show that (π,𝒮λ)(\pi,{\mathcal{S}}^{\lambda}) is irreducible.

Solution: Letting (π,W)(\pi,W) be a non-zero subrepresentation of (π,𝒮λ)(\pi,{\mathcal{S}}^{\lambda}). Then (π,W)(\pi,W) is also a subrepresentation of (π,λ)(\pi,{\mathcal{M}}^{\lambda}). By Problems 83 and 84, either 𝒮λW{\mathcal{S}}^{\lambda}\subset W or 𝒮λW{\mathcal{S}}^{\lambda}\perp W. Since W𝒮λW\subset{\mathcal{S}}^{\lambda} (and is non-zero), we cannot have 𝒮λW{\mathcal{S}}^{\lambda}\perp W, hence 𝒮λW{\mathcal{S}}^{\lambda}\subset W. This gives 𝒮λW𝒮λ{\mathcal{S}}^{\lambda}\subset W\subset{\mathcal{S}}^{\lambda}, i.e. W=𝒮λW={\mathcal{S}}^{\lambda}.

Problem 119. Let (π,d)(\pi,{\mathbb{C}}^{d}) be a representation of a group GG. Denote the space of degree nn polynomials with complex coefficients in dd variables by Pn(d)P_{n}({\mathbb{C}}^{d}). Let (λ,Pn(d))\big{(}\lambda,P_{n}({\mathbb{C}}^{d})\big{)} denote the representation of GG defined through

[λ(g)p](z)=p(π(g1)z)gG,pPn(d),zd.[\lambda(g)p](z)=p(\pi(g^{-1})z)\qquad\forall g\in G,\,p\in P_{n}({\mathbb{C}}% ^{d}),\,z\in{\mathbb{C}}^{d}.

Show that

(λ,Pn(d))i=0n(Symiπ,Symid).\big{(}\lambda,P_{n}({\mathbb{C}}^{d})\big{)}\cong\bigoplus_{i=0}^{n}\big{(}% \mathrm{Sym}^{i}\pi^{*},\mathrm{Sym}^{i}{\mathbb{C}}^{d}\big{)}.

(Here (Sym0π,Sym0d)\big{(}\mathrm{Sym}^{0}\pi^{*},\mathrm{Sym}^{0}{\mathbb{C}}^{d}\big{)} denotes the one-dimensional trivial representation.)

Problem 120. Let (π,V)(\pi,V) be an irreducible finite-dimensional representation of a group GG, and (ρ,U)(\rho,U) an irreducible finite-dimensional representation of a group HH.

  1. (a)

    Show that (πρ,VU)(\pi\otimes\rho,V\otimes U) is an irreducible representation of G×HG\times H, where

    πρ(g,h)vu=π(g)vρ(h)u\pi\otimes\rho(g,h)v\otimes u=\pi(g)v\otimes\rho(h)u

    for all pure tensors vuVUv\otimes u\in V\otimes U and (g,h)G×H(g,h)\in G\times H.

  2. (b)

    Challenging! Assuming GG and HH are finite, show that every irreducible representation of G×HG\times H is of the form (πρ,VU)(\pi\otimes\rho,V\otimes U) for irreducible representations (π,V)(\pi,V) and (ρ,U)(\rho,U) of GG and HH, respectively.

Solution:

  1. (a)

    Given (g,h)G×H(g,h)\in G\times H, let {vi}\{v_{i}\} be an eigenbasis of VV for π(g)\pi(g) with eigenvalues λi\lambda_{i}, and {uj}\{u_{j}\} an eigenbasis of UU for ρ(h)\rho(h), with eigenvalues μj\mu_{j}. Then {viuj}\{v_{i}\otimes u_{j}\} is a basis of VUV\otimes U, and

    π(g)ρ(h)(viuj)=π(g)viρ(h)uj=λiviμjuj=(λiμj)(viuj);\pi(g)\otimes\rho(h)(v_{i}\otimes u_{j})=\pi(g)v_{i}\otimes\rho(h)u_{j}=% \lambda_{i}v_{i}\otimes\mu_{j}u_{j}=(\lambda_{i}\mu_{j})(v_{i}\otimes u_{j});

    {viuj}\{v_{i}\otimes u_{j}\} is therefore in fact an eigenbasis, hence

    χπρ(g,h)=i,jλiμj=(iλi)(jμj)=χπ(g)χρ(h).\chi_{\pi\otimes\rho}(g,h)=\sum_{i,j}\lambda_{i}\mu_{j}=\left(\sum_{i}\lambda_% {i}\right)\left(\sum_{j}\mu_{j}\right)=\chi_{\pi}(g)\chi_{\rho}(h).

    We can now compute

    χπρG×H2=\displaystyle\|\chi_{\pi\otimes\rho}\|_{G\times H}^{2}= 1|G×H|(g,h)G×H|χπρ(g,h)|2=1|G||H|(g,h)G×H|χπ(g)|2|χρ(h)|2\displaystyle\frac{1}{|G\times H|}\sum_{(g,h)\in G\times H}|\chi_{\pi\otimes% \rho}(g,h)|^{2}=\frac{1}{|G|\cdot|H|}\sum_{(g,h)\in G\times H}|\chi_{\pi}(g)|^% {2}|\chi_{\rho}(h)|^{2}
    =(1|G|gG|χπ(g)|2)(1|H|hH|χρ(h)|2)=χπG2χρH2=1,\displaystyle=\left(\frac{1}{|G|}\sum_{g\in G}|\chi_{\pi}(g)|^{2}\right)\left(% \frac{1}{|H|}\sum_{h\in H}|\chi_{\rho}(h)|^{2}\right)=\|\chi_{\pi}\|_{G}^{2}\|% \chi_{\rho}\|_{H}^{2}=1,

    as χπG2=χρH2=1\|\chi_{\pi}\|_{G}^{2}=\|\chi_{\rho}\|_{H}^{2}=1 since π\pi and ρ\rho are irreducible.

  2. (b)

    Here we will show that the set {πρ}πIrr(G),ρIrr(H)\{\pi\otimes\rho\}_{\pi\in\mathrm{Irr}(G),\rho\in\mathrm{Irr}(H)} is a complete set of irreducible representations of G×HG\times H. Firstly, note that all the representations πρ\pi\otimes\rho are non-isomorphic: if ρ≇ρIrr(H)\rho\not\cong\rho^{\prime}\in\mathrm{Irr}(H), then there exists hHh\in H such that χρ(h)χρ(h),\chi_{\rho}(h)\neq\chi{\rho^{\prime}}(h), hence πρ≇πρ\pi\otimes\rho\not\cong\pi\otimes\rho^{\prime} for any πIrr(G)\pi\in\mathrm{Irr}(G); similarly for two non-isomorphic irreducible representations π\pi, π\pi^{\prime} of GG. This shows that all πρ\pi\otimes\rho are non-isomorphic. Next, we show that these are all the irreducible representations of G×HG\times H by way of the sum of squares formula

    (π,ρ)Irr(G)×Irr(H)|χπρ(eG,eH)|2=(π,ρ)Irr(G)×Irr(H)|χπ(eG)|2|χρ(eH)|2\displaystyle\sum_{(\pi,\rho)\in\mathrm{Irr}(G)\times\mathrm{Irr}(H)}|\chi_{% \pi\otimes\rho}(e_{G},e_{H})|^{2}=\sum_{(\pi,\rho)\in\mathrm{Irr}(G)\times% \mathrm{Irr}(H)}|\chi_{\pi}(e_{G})|^{2}|\chi_{\rho}(e_{H})|^{2}
    =(πIrr(G)|χπ(eG)|2)(ρIrr(H)|χρ(eH)|2)=|G||H|=|G×H|,\displaystyle=\left(\sum_{\pi\in\mathrm{Irr}(G)}|\chi_{\pi}(e_{G})|^{2}\right)% \left(\sum_{\rho\in\mathrm{Irr}(H)}|\chi_{\rho}(e_{H})|^{2}\right)=|G|\cdot|H|% =|G\times H|,

    so there are no other irreducibles.

Problem 121. Let (π,n)(\pi,{\mathbb{C}}^{n}) be a representation of a finite group GG. Show that

fg(x)=det(xIdπ(g))=k=0n(1)kxnkχkπ(g).f_{g}(x)=\det(x{\,\mathrm{Id}}-\pi(g)\big{)}=\sum_{k=0}^{n}(-1)^{k}x^{n-k}\chi% _{\bigwedge^{k}\pi}(g).

(Here (0π,0n)\big{(}\bigwedge^{0}\pi,\bigwedge^{0}{\mathbb{C}}^{n}\big{)} denotes the one-dimensional trivial representation.)

Solution: The polynomial fgf_{g} is the characteristic polynomial of π(g)\pi(g). Letting {vi}\{v_{i}\} be an eigenbasis of n\mathbb{C}^{n} w.r.t. π(g)\pi(g), with eigenvalues λi\lambda_{i}, we have

fg(x)=i=1n(xλi)=xn(λ1+λ2++λn)xn1++(1)nλ1λ2λn.f_{g}(x)=\prod_{i=1}^{n}(x-\lambda_{i})=x^{n}-(\lambda_{1}+\lambda_{2}+\ldots+% \lambda_{n})x^{n-1}+\ldots+(-1)^{n}\lambda_{1}\lambda_{2}\cdots\lambda_{n}.

By Vieta’s formulas, the coefficient in front of xnkx^{n-k} is given by

(1)k1i1<i2<<iknλi1λi2λik.(-1)^{k}\sum_{1\leq i_{1}<i_{2}<\ldots<i_{k}\leq n}\lambda_{i_{1}}\lambda_{i_{% 2}}\cdots\lambda_{i_{k}}.

On the other hand, for each 1kn1\leq k\leq n, the set {vi1vi2vk:i1<i2<<ik}\{v_{i_{1}}\wedge v_{i_{2}}\wedge\ldots\wedge v_{k}\,:\,i_{1}<i_{2}<\ldots<i_{% k}\} forms a basis of kn\bigwedge^{k}{\mathbb{C}}^{n}, and is in fact an eigenbasis for kπ(g)\bigwedge^{k}\pi(g):

kπ(g)(vi1vi2vk)=π(g)vi1π(g)vi2π(g)vk=(λi1λi2λik)vi1vi2vk.\bigwedge^{k}\pi(g)(v_{i_{1}}\wedge v_{i_{2}}\wedge\ldots\wedge v_{k})=\pi(g)v% _{i_{1}}\wedge\pi(g)v_{i_{2}}\wedge\ldots\pi(g)\wedge v_{k}=(\lambda_{i_{1}}% \lambda_{i_{2}}\cdots\lambda_{i_{k}})v_{i_{1}}\wedge v_{i_{2}}\wedge\ldots% \wedge v_{k}.

Thus,

χkπ(g)=1i1<i2<<iknλi1λi2λik,\chi_{\bigwedge^{k}\pi}(g)=\sum_{1\leq i_{1}<i_{2}<\ldots<i_{k}\leq n}\lambda_% {i_{1}}\lambda_{i_{2}}\cdots\lambda_{i_{k}},

which was what we wanted to prove.