Lecture 15

Problem 82. For each irreducible representation of S4S_{4}, decompose its induction to S5S_{5} into irreducibles (where S4S_{4} is regarded as the subgroup of elements of S5S_{5} that fix 5{1,,5}5\in\{1,\ldots,5\}).

Solution: (A slight abuse of notation is used throughout the solution; the same notation is used for the (different) representations of S4S_{4} and S5S_{5}). We will use Frobenius reciprocity: for an irreducible representation π\pi of S4S_{4} and an irreducible representation σ\sigma of S5S_{5}, we have

IndS4S5χπ,χσS5=χπ,ResS4S5χσS4,\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\chi_{\pi},\chi_{\sigma}\rangle_{S_{5}}=% \langle\chi_{\pi},\operatorname{Res}_{S_{4}}^{S_{5}}\chi_{\sigma}\rangle_{S_{4% }},

so we need the restrictions to S4S_{4} of the irreducible characters of S5S_{5}. Recalling the character table of S5S_{5} and then restricting to S4S_{4} gives the following values:

size: 1 6 3 8 6
ee (1 2)(1\;2) (1 2)(3 4)(1\;2)(3\;4) (1 2 3)(1\;2\;3) (1 2 3 4)(1\;2\;3\;4)
(ResS4S5Id,)(\operatorname{Res}_{S_{4}}^{S_{5}}{\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1 1
(ResS4S5sgn,)(\operatorname{Res}_{S_{4}}^{S_{5}}\mathrm{sgn},{\mathbb{C}}) 1 -1 1 1 -1
(ResS4S5π,W0)(\operatorname{Res}_{S_{4}}^{S_{5}}\pi,W_{0}) 4 22 0 1 0
(ResS4S5sgnπ,W0)(\operatorname{Res}_{S_{4}}^{S_{5}}\mathrm{sgn}\,\pi,W_{0}) 4 -2 0 1 0
(ResS4S5ρ,V)(\operatorname{Res}_{S_{4}}^{S_{5}}\rho,V) 5 1 1 -1 -1
(ResS4S5sgnρ,V)(\operatorname{Res}_{S_{4}}^{S_{5}}\mathrm{sgn}\rho,V) 5 -1 1 -1 1
(ResS4S5(ππ,2W0)(\operatorname{Res}_{S_{4}}^{S_{5}}(\pi\wedge\pi,\bigwedge^{2}W_{0}) 6 0 -2 0 0

The irreducible characters of S4S_{4} are as follows:

size: 1 6 3 8 6
ee (1 2)(1\;2) (1 2)(3 4)(1\;2)(3\;4) (1 2 3)(1\;2\;3) (1 2 3 4)(1\;2\;3\;4)
(Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1 1
(sgn,)(\mathrm{sgn},{\mathbb{C}}) 1 -1 1 1 -1
(π,W0)(\pi,W_{0}) 3 11 -1 0 -1
(sgnπ,W0)(\mathrm{sgn}\,\pi,W_{0}) 3 -1 -1 0 1
(ρ,V)(\rho,V) 2 0 2 -1 0

We now compute the inner product of each irreducible character of S4S_{4} with the restricted characters above:

  • IndS4S5Id\mathrm{Ind}_{S_{4}}^{S_{5}}{\,\mathrm{Id}}:

    IndS4S5χId,χIdS5=χId,ResS4S5χIdS4=1\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\chi_{{\,\mathrm{Id}}},\chi_{{% \,\mathrm{Id}}}\rangle_{S_{5}}=\langle\chi_{{\,\mathrm{Id}}},\operatorname{Res% }_{S_{4}}^{S_{5}}\chi_{{\,\mathrm{Id}}}\rangle_{S_{4}}=1
    IndS4S5χId,χπS5=χId,ResS4S5χπS4=1.\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\chi_{{\,\mathrm{Id}}},\chi_{% \pi}\rangle_{S_{5}}=\langle\chi_{{\,\mathrm{Id}}},\operatorname{Res}_{S_{4}}^{% S_{5}}\chi_{\pi}\rangle_{S_{4}}=1.

    The dimension of IndS4S5Id\mathrm{Ind}_{S_{4}}^{S_{5}}{{\,\mathrm{Id}}} is [S5|S4]1=5[S_{5}\,|\,S_{4}]\cdot 1=5, so no other irreducibles occur, i.e.

    IndS4S5(Id,)(Id,)(π,W0).\mathrm{Ind}_{S_{4}}^{S_{5}}({\,\mathrm{Id}},{\mathbb{C}})\cong({\,\mathrm{Id}% },{\mathbb{C}})\oplus(\pi,W_{0}).
  • IndS4S5sgn\mathrm{Ind}_{S_{4}}^{S_{5}}\mathrm{sgn}:

    IndS4S5χsgn,χsgnS5=χsgn,ResS4S5χsgnS4=1\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\chi_{\mathrm{sgn}},\chi_{% \mathrm{sgn}}\rangle_{S_{5}}=\langle\chi_{\mathrm{sgn}},\operatorname{Res}_{S_% {4}}^{S_{5}}\chi_{\mathrm{sgn}}\rangle_{S_{4}}=1
    IndS4S5χsgn,χsgnπS5=χsgn,ResS4S5χsgnπS4=1.\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\chi_{\mathrm{sgn}},\chi_{% \mathrm{sgn}\pi}\rangle_{S_{5}}=\langle\chi_{\mathrm{sgn}},\operatorname{Res}_% {S_{4}}^{S_{5}}\chi_{\mathrm{sgn}\pi}\rangle_{S_{4}}=1.

    The dimension of IndS4S5sgn\mathrm{Ind}_{S_{4}}^{S_{5}}\mathrm{sgn} is [S5|S4]1=5[S_{5}\,|\,S_{4}]\cdot 1=5, so no other irreducibles occur, i.e.

    IndS4S5(sgn,)(sgn,)(sgnπ,W0).\mathrm{Ind}_{S_{4}}^{S_{5}}(\mathrm{sgn},{\mathbb{C}})\cong(\mathrm{sgn},{% \mathbb{C}})\oplus(\mathrm{sgn}\pi,W_{0}).
  • IndS4S5π\mathrm{Ind}_{S_{4}}^{S_{5}}\pi: Since the restriction from S5S_{5} to S4S_{4} of Id{\,\mathrm{Id}} and sgn\mathrm{sgn} are Id{\,\mathrm{Id}} and sgn\mathrm{sgn}, we know that neither of these representations occur. We next compute:

    IndS4S5χπ,χπS5=χπ,ResS4S5χπS4=1\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\chi_{\pi},\chi_{\pi}\rangle_{% S_{5}}=\langle\chi_{\mathrm{\pi}},\operatorname{Res}_{S_{4}}^{S_{5}}\chi_{\pi}% \rangle_{S_{4}}=1
    IndS4S5χπ,χsgnπS5=χπ,ResS4S5χπS4=0\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\chi_{\pi},\chi_{\mathrm{sgn}% \pi}\rangle_{S_{5}}=\langle\chi_{\mathrm{\pi}},\operatorname{Res}_{S_{4}}^{S_{% 5}}\chi_{\pi}\rangle_{S_{4}}=0
    IndS4S5χπ,χρS5=χπ,ResS4S5χρS4=1\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\chi_{\pi},\chi_{\rho}\rangle_% {S_{5}}=\langle\chi_{\mathrm{\pi}},\operatorname{Res}_{S_{4}}^{S_{5}}\chi_{% \rho}\rangle_{S_{4}}=1
    IndS4S5χπ,χsgnρS5=χπ,ResS4S5χsgnρS4=0\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\chi_{\pi},\chi_{\mathrm{sgn}% \rho}\rangle_{S_{5}}=\langle\chi_{\mathrm{\pi}},\operatorname{Res}_{S_{4}}^{S_% {5}}\chi_{\mathrm{sgn}\rho}\rangle_{S_{4}}=0
    IndS4S5χπ,χππS5=χπ,ResS4S5χππS4=1,\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\chi_{\pi},\chi_{\pi\wedge\pi}% \rangle_{S_{5}}=\langle\chi_{\mathrm{\pi}},\operatorname{Res}_{S_{4}}^{S_{5}}% \chi_{\pi\wedge\pi}\rangle_{S_{4}}=1,

    giving

    IndS4S5(π,W0)(π,W0)(ρ,V)(ππ,W02).\mathrm{Ind}_{S_{4}}^{S_{5}}(\pi,W_{0})\cong(\pi,W_{0})\oplus(\rho,V)\oplus(% \pi\wedge\pi,\bigwedge\,\!\!\!{}^{2}W_{0}).
  • IndS4S5sgnπ\mathrm{Ind}_{S_{4}}^{S_{5}}\mathrm{sgn}\pi: Similarly to IndS4S5π\mathrm{Ind}_{S_{4}}^{S_{5}}\pi, neither Id{\,\mathrm{Id}} and sgn\mathrm{sgn} occur in the decomposition. The remaining inner products are

    IndS4S5χπ,χπS5=χπ,ResS4S5χπS4=0\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\chi_{\pi},\chi_{\pi}\rangle_{% S_{5}}=\langle\chi_{\mathrm{\pi}},\operatorname{Res}_{S_{4}}^{S_{5}}\chi_{\pi}% \rangle_{S_{4}}=0
    IndS4S5χπ,χsgnπS5=χπ,ResS4S5χπS4=1\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\chi_{\pi},\chi_{\mathrm{sgn}% \pi}\rangle_{S_{5}}=\langle\chi_{\mathrm{\pi}},\operatorname{Res}_{S_{4}}^{S_{% 5}}\chi_{\pi}\rangle_{S_{4}}=1
    IndS4S5χπ,χρS5=χπ,ResS4S5χρS4=0\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\chi_{\pi},\chi_{\rho}\rangle_% {S_{5}}=\langle\chi_{\mathrm{\pi}},\operatorname{Res}_{S_{4}}^{S_{5}}\chi_{% \rho}\rangle_{S_{4}}=0
    IndS4S5χπ,χsgnρS5=χπ,ResS4S5χsgnρS4=1\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\chi_{\pi},\chi_{\mathrm{sgn}% \rho}\rangle_{S_{5}}=\langle\chi_{\mathrm{\pi}},\operatorname{Res}_{S_{4}}^{S_% {5}}\chi_{\mathrm{sgn}\rho}\rangle_{S_{4}}=1
    IndS4S5χπ,χππS5=χπ,ResS4S5χππS4=1,\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\chi_{\pi},\chi_{\pi\wedge\pi}% \rangle_{S_{5}}=\langle\chi_{\mathrm{\pi}},\operatorname{Res}_{S_{4}}^{S_{5}}% \chi_{\pi\wedge\pi}\rangle_{S_{4}}=1,

    hence

    IndS4S5(sgnπ,W0)(sgnπ,W0)(sgnρ,V)(ππ,W02).\mathrm{Ind}_{S_{4}}^{S_{5}}(\mathrm{sgn}\pi,W_{0})\cong(\mathrm{sgn}\pi,W_{0}% )\oplus(\mathrm{sgn}\rho,V)\oplus(\pi\wedge\pi,\bigwedge\,\!\!\!{}^{2}W_{0}).
  • IndS4S5ρ\mathrm{Ind}_{S_{4}}^{S_{5}}\rho: The dimension of this representation is 1010, so we start by looking at the higher-dimensional irreducibles:

    IndS4S5ρ,χππS5=χρ,ResS4S5χππS4=0\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\rho,\chi_{\pi\wedge\pi}% \rangle_{S_{5}}=\langle\chi_{\mathrm{\rho}},\operatorname{Res}_{S_{4}}^{S_{5}}% \chi_{\pi\wedge\pi}\rangle_{S_{4}}=0
    IndS4S5ρ,χρS5=χρ,ResS4S5χρS4=1\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\rho,\chi_{\rho}\rangle_{S_{5}% }=\langle\chi_{\mathrm{\rho}},\operatorname{Res}_{S_{4}}^{S_{5}}\chi_{\rho}% \rangle_{S_{4}}=1
    IndS4S5ρ,χsgnρS5=χρ,ResS4S5χsgnρS4=1,\displaystyle\langle\mathrm{Ind}_{S_{4}}^{S_{5}}\rho,\chi_{\mathrm{sgn}\rho}% \rangle_{S_{5}}=\langle\chi_{\mathrm{\rho}},\operatorname{Res}_{S_{4}}^{S_{5}}% \chi_{\mathrm{sgn}\rho}\rangle_{S_{4}}=1,

    so

    IndS4S5(sgn,)(ρ,V)(sgnρ,V).\mathrm{Ind}_{S_{4}}^{S_{5}}(\mathrm{sgn},{\mathbb{C}})\cong(\rho,V)\oplus(% \mathrm{sgn}\rho,V).

Problem 83. Let (π,V)(\pi,V) be an irreducible representation of GG and HH a subgroup of GG. Show that (π,V)(\pi,V) isomorphic to a subrepresentation of a representation induced from an irreducible representation of HH.

Solution: Assume that the irreducible representation (σ,W)(\sigma,W) of HH occurs in the decomposition of (π|H,V)(\pi|_{H},V) into irreducibles; hence χπ|H,χσH=ResHGχπ,χσH>0\langle\chi_{\pi|_{H}},\chi_{\sigma}\rangle_{H}=\langle\mathrm{Res}_{H}^{G}% \chi_{\pi},\chi_{\sigma}\rangle_{H}>0. Frobenius reciprocity gives

ResHGχπ,χσH=χπ,IndHGχσG,\langle\mathrm{Res}_{H}^{G}\chi_{\pi},\chi_{\sigma}\rangle_{H}=\langle\chi_{% \pi},\mathrm{Ind}_{H}^{G}\chi_{\sigma}\rangle_{G},

so (π,V)(\pi,V) occurs in the decomposition of IndHGχσ\mathrm{Ind}_{H}^{G}\chi_{\sigma} into irreducibles, i.e. it is isomorphic to a subrepresentation of IndHGχσ\mathrm{Ind}_{H}^{G}\chi_{\sigma}.

Problem 84. Let χπ\chi_{\pi} be an irreducible character of H<GH<G, and write

IndHGχπ=σIrr(G)dσχσ.\mathrm{Ind}^{G}_{H}\chi_{\pi}=\sum_{\sigma\in\mathrm{Irr}(G)}d_{\sigma}\chi_{% \sigma}.

Show that σdσ2[G:H]\sum_{\sigma}d_{\sigma}^{2}\leq[G:H].

Solution: Since the irreducible characters of GG form an orthonormal basis of the space of class functions of GG, we have

IndHGχπG2=σIrr(G)dσ2.\|\mathrm{Ind}^{G}_{H}\chi_{\pi}\|_{G}^{2}=\sum_{\sigma\in\mathrm{Irr}(G)}d_{% \sigma}^{2}.

We now use Frobenius reciprocity:

IndHGχπG2=IndHGχπ,IndHGχπG=χπ,ResHGIndHGχπH,\|\mathrm{Ind}^{G}_{H}\chi_{\pi}\|_{G}^{2}=\langle\mathrm{Ind}^{G}_{H}\chi_{% \pi},\mathrm{Ind}^{G}_{H}\chi_{\pi}\rangle_{G}=\langle\chi_{\pi},\operatorname% {Res}^{G}_{H}\mathrm{Ind}^{G}_{H}\chi_{\pi}\rangle_{H},

which equals the number of copies of π\pi that occur in the decomposition of ResHGIndHGπ\operatorname{Res}^{G}_{H}\mathrm{Ind}^{G}_{H}{\pi} into irreducible representations of HH. Noting that

dimResHGIndHGπ=dimIndHGπ=[G|H]dimπ,\operatorname{dim}\operatorname{Res}_{H}^{G}\mathrm{Ind}_{H}^{G}\pi=% \operatorname{dim}\mathrm{Ind}_{H}^{G}\pi=[G\,|\,H]\cdot\operatorname{dim}\pi,

we thus see that π\pi can occur at most [G|H][G\,|\,H] times in the decomposition of ResHGIndHGπ\operatorname{Res}^{G}_{H}\mathrm{Ind}^{G}_{H}{\pi}, giving

σIrr(G)dσ2=χπ,ResHGIndHGχπH[G|H].\sum_{\sigma\in\mathrm{Irr}(G)}d_{\sigma}^{2}=\langle\chi_{\pi},\operatorname{% Res}^{G}_{H}\mathrm{Ind}^{G}_{H}\chi_{\pi}\rangle_{H}\leq[G\,|\,H].

Problem 85. Let HH be a subgroup of GG. Show

  1. (a)

    If (π1,V1)(\pi_{1},V_{1}), (π2,V2)(\pi_{2},V_{2}) are representations of HH, then

    IndHG((π1,V1)(π2,V2))IndHG(π1,V1)IndHG(π2,V2).\mathrm{Ind}^{G}_{H}\big{(}(\pi_{1},V_{1})\oplus(\pi_{2},V_{2})\big{)}\cong% \mathrm{Ind}^{G}_{H}(\pi_{1},V_{1})\oplus\mathrm{Ind}^{G}_{H}(\pi_{2},V_{2}).
  2. (b)

    If K<H<GK<H<G, and (ρ,U)(\rho,U) is a representation of KK, then

    IndKG(ρ,U)IndHG(IndKH(ρ,U)).\mathrm{Ind}_{K}^{G}(\rho,U)\cong\mathrm{Ind}_{H}^{G}\big{(}\mathrm{Ind}_{K}^{% H}(\rho,U)\big{)}.
  3. (c)

    If (π,V)(\pi,V) is a representation of GG, then

    IndHG(ResHG(π,V))(π,V)IndHG(Id,).\mathrm{Ind}_{H}^{G}\big{(}\operatorname{Res}_{H}^{G}(\pi,V)\big{)}\cong(\pi,V% )\otimes\mathrm{Ind}^{G}_{H}({\,\mathrm{Id}},{\mathbb{C}}).

Solution: We use Problem 49 Lecture 10 and Frobenius reciprocity: Let (σ,Z)(\sigma,Z) be any irreducible representation of GG. Then for (a), the inner product of the character of the representation in the left-hand side of the identity with χσ\chi_{\sigma} equals

χσ,IndHGχπ1π2G=ResHGχσ,χπ1π2H=ResHGχσ,χπ1+χπ2H\displaystyle\langle\chi_{\sigma},\mathrm{Ind}_{H}^{G}\chi_{\pi_{1}\oplus\pi_{% 2}}\rangle_{G}=\langle\operatorname{Res}_{H}^{G}\chi_{\sigma},\chi_{\pi_{1}% \oplus\pi_{2}}\rangle_{H}=\langle\operatorname{Res}_{H}^{G}\chi_{\sigma},\chi_% {\pi_{1}}+\chi_{\pi_{2}}\rangle_{H}
=ResHGχσ,χπ1H+ResHGχσ,χπ2H=χσ,IndHGχπ1G+χσ,IndHGχπ2G\displaystyle=\langle\operatorname{Res}_{H}^{G}\chi_{\sigma},\chi_{\pi_{1}}% \rangle_{H}+\langle\operatorname{Res}_{H}^{G}\chi_{\sigma},\chi_{\pi_{2}}% \rangle_{H}=\langle\chi_{\sigma},\mathrm{Ind}_{H}^{G}\chi_{\pi_{1}}\rangle_{G}% +\langle\chi_{\sigma},\mathrm{Ind}_{H}^{G}\chi_{\pi_{2}}\rangle_{G}
=χσ,χIndHGπ1IndHGπ2G,\displaystyle=\langle\chi_{\sigma},\chi_{\mathrm{Ind}_{H}^{G}\pi_{1}\oplus% \mathrm{Ind}_{H}^{G}\pi_{2}}\rangle_{G},

proving (a). Similarly, for (b), looking at the left-hand side, we have

χσ,IndKGχρG=ResKGχσ,χρK,\displaystyle\langle\chi_{\sigma},\mathrm{Ind}_{K}^{G}\chi_{\rho}\rangle_{G}=% \langle\operatorname{Res}_{K}^{G}\chi_{\sigma},\chi_{\rho}\rangle_{K},

whereas the right-hand side gives

χσ,IndHGIndKHχρG=ResHGχσ,IndKHχρH=ResKHResHGχσ,χρK=ResKGχσ,χρK,\displaystyle\langle\chi_{\sigma},\mathrm{Ind}_{H}^{G}\mathrm{Ind}_{K}^{H}\chi% _{\rho}\rangle_{G}=\langle\operatorname{Res}_{H}^{G}\chi_{\sigma},\mathrm{Ind}% _{K}^{H}\chi_{\rho}\rangle_{H}=\langle\operatorname{Res}_{K}^{H}\operatorname{% Res}_{H}^{G}\chi_{\sigma},\chi_{\rho}\rangle_{K}=\langle\operatorname{Res}_{K}% ^{G}\chi_{\sigma},\chi_{\rho}\rangle_{K},

since ResKHResHG=ResKG\operatorname{Res}_{K}^{H}\operatorname{Res}_{H}^{G}=\operatorname{Res}_{K}^{G}. Finally, for c), in the left-hand side we have

χσ,IndHGResHGχπG=ResHGχσ,ResHGχπH,\langle\chi_{\sigma},\mathrm{Ind}_{H}^{G}\operatorname{Res}_{H}^{G}\chi_{\pi}% \rangle_{G}=\langle\operatorname{Res}_{H}^{G}\chi_{\sigma},\operatorname{Res}_% {H}^{G}\chi_{\pi}\rangle_{H},

and for the right-hand side,

χσ,χπIndHGIdG=\displaystyle\langle\chi_{\sigma},\chi_{\pi\otimes\mathrm{Ind}_{H}^{G}{\,% \mathrm{Id}}}\rangle_{G}= χσ,χπIndHGχIdG=χσχπ¯,IndHGχIdG=ResHG(χσχπ¯),χIdH\displaystyle\langle\chi_{\sigma},\chi_{\pi}\mathrm{Ind}_{H}^{G}\chi_{{\,% \mathrm{Id}}}\rangle_{G}=\langle\chi_{\sigma}\overline{\chi_{\pi}},\mathrm{Ind% }_{H}^{G}\chi_{{\,\mathrm{Id}}}\rangle_{G}=\langle\operatorname{Res}_{H}^{G}% \big{(}\chi_{\sigma}\overline{\chi_{\pi}}\big{)},\chi_{{\,\mathrm{Id}}}\rangle% _{H}
=ResHGχσResHGχπ¯,χIdH=ResHGχσ,ResHGχπH.\displaystyle=\langle\operatorname{Res}_{H}^{G}\chi_{\sigma}\cdot\overline{% \operatorname{Res}_{H}^{G}\chi_{\pi}},\chi_{{\,\mathrm{Id}}}\rangle_{H}=% \langle\operatorname{Res}_{H}^{G}\chi_{\sigma},\operatorname{Res}_{H}^{G}\chi_% {\pi}\rangle_{H}.