Lecture 5

Problem 31. Let (π,U)(\pi,U) and (π,W)(\pi,W) be subrepresentations of a representation (π,V)(\pi,V) such that V=UWV=U\oplus W. Verify that the map

(𝐮,𝐰)𝐮+𝐰({\bf u},{\bf w})\mapsto{\bf u}+{\bf w}

is a GG-isomorphism from (π,U)(π,W)(\pi,U)\oplus(\pi,W) to (π,V)(\pi,V).

Solution: Let ϕ\phi be the map in question. It should be clear from prior knowledge that this is an isomorphism of vector spaces. Clearly

ϕ((𝐮1+λ𝐮2,𝐰1+λ𝐰2))=𝐮1+λ𝐮2+𝐰1+λ𝐰2=ϕ((𝐮1,𝐰1))+λϕ((𝐮2,𝐰2)),\phi(({\bf u}_{1}+\lambda{\bf u}_{2},{\bf w}_{1}+\lambda{\bf w}_{2}))={\bf u}_% {1}+\lambda{\bf u}_{2}+{\bf w}_{1}+\lambda{\bf w}_{2}=\phi(({\bf u}_{1},{\bf w% }_{1}))+\lambda\phi(({\bf u}_{2},{\bf w}_{2})),

for all 𝐮1,𝐮2U{\bf u}_{1},{\bf u}_{2}\in U, 𝐰1,𝐰2W{\bf w}_{1},{\bf w}_{2}\in W and λk\lambda\in k. Also for (u,w)(u,w) to be in kerϕ\ker\phi both uu and ww must be zero, as UW={0}U\cap W=\{0\}. As the dimensions of both VV and UWU\oplus W are the same, by definition, this must be a bijection and hence an isomorphism of vector spaces.

Now let gGg\in G and (𝐮,𝐰)Uw({\bf u},{\bf w})\in U\oplus w, then

ϕ((π(g)𝐮,π(g)𝐰))=π(g)𝐮+π(g)𝐰=π(g)(𝐮+𝐰)=π(g)ϕ((𝐮,𝐰)).\phi((\pi(g){\bf u},\pi(g){\bf w}))=\pi(g){\bf u}+\pi(g){\bf w}=\pi(g)({\bf u}% +{\bf w})=\pi(g)\phi(({\bf u},{\bf w})).

Hence it is a GG-homomorphism and thus a GG-isomorphism.

Problem 32. Verify that

π(g)𝐯,π(g)𝐮=𝐯,𝐮𝐯,𝐮V,gG\langle\pi(g){\bf v},\pi(g){\bf u}\rangle=\langle{\bf v},{\bf u}\rangle\qquad% \forall{\bf v},{\bf u}\in V,\;g\in G

is equivalent to

π(g)𝐯,𝐮=𝐯,π(g1)𝐮𝐯,𝐮V,gG.\langle\pi(g){\bf v},{\bf u}\rangle=\langle{\bf v},\pi(g^{-1}){\bf u}\rangle% \qquad\forall{\bf v},{\bf u}\in V,\;g\in G.

Solution: We apply π(g)1\pi(g)^{-1} to the second term on both sides:

π(g)𝐯,π(g)𝐮\displaystyle\langle\pi(g){\bf v},\pi(g){\bf u}\rangle =𝐯,𝐮,\displaystyle=\langle{\bf v},{\bf u}\rangle,
π(g)𝐯,π(g)1π(g)𝐮\displaystyle\langle\pi(g){\bf v},\pi(g)^{-1}\pi(g){\bf u}\rangle =𝐯,π(g)1𝐮,\displaystyle=\langle{\bf v},\pi(g)^{-1}{\bf u}\rangle,
π(g)𝐯,Id𝐮\displaystyle\langle\pi(g){\bf v},{\,\mathrm{Id}}{\bf u}\rangle =𝐯,π(g)1𝐮,\displaystyle=\langle{\bf v},\pi(g)^{-1}{\bf u}\rangle,
π(g)𝐯,𝐮\displaystyle\langle\pi(g){\bf v},{\bf u}\rangle =𝐯,π(g1)𝐮,\displaystyle=\langle{\bf v},\pi(g^{-1}){\bf u}\rangle,

for all 𝐯,𝐮V{\bf v},{\bf u}\in V and all gGg\in G.

Problem 33. Let VV be a finite-dimensional complex vector space with a basis {𝐛i}i=1,,n\{{\bf b}_{i}\}_{i=1,\ldots,n}, where n=dimVn=\operatorname{dim}V. Show that

i=1nxi𝐛i,j=1nyj𝐛j:=i=1nxiyi¯,\left\langle\sum_{i=1}^{n}x_{i}{\bf b}_{i},\sum_{j=1}^{n}y_{j}{\bf b}_{j}% \right\rangle:=\sum_{i=1}^{n}x_{i}\overline{y_{i}},

for xi,yjx_{i},\,y_{j}\in{\mathbb{C}}, defines an inner product on VV.

Solution: Consider i=1nxi𝐛i,i=1nyi𝐛i,i=1nzi𝐛iV\sum_{i=1}^{n}x_{i}{\bf b}_{i},\sum_{i=1}^{n}y_{i}{\bf b}_{i},\sum_{i=1}^{n}z_% {i}{\bf b}_{i}\in V and λ\lambda\in{\mathbb{C}}, then

i=1nxi𝐛i+λi=1nyi𝐛i,j=1nzj𝐛j\displaystyle\left\langle\sum_{i=1}^{n}x_{i}{\bf b}_{i}+\lambda\sum_{i=1}^{n}y% _{i}{\bf b}_{i},\sum_{j=1}^{n}z_{j}{\bf b}_{j}\right\rangle =i=1n(xi+λyi)zi¯\displaystyle=\sum_{i=1}^{n}(x_{i}+\lambda y_{i})\overline{z_{i}}
=i=1nxizi¯+λi=1nyizi¯\displaystyle=\sum_{i=1}^{n}x_{i}\overline{z_{i}}+\lambda\sum_{i=1}^{n}y_{i}% \overline{z_{i}}
=i=1nxi𝐛i,j=1nzj𝐛j+λi=1nyi𝐛i,j=1nzj𝐛j,\displaystyle=\left\langle\sum_{i=1}^{n}x_{i}{\bf b}_{i},\sum_{j=1}^{n}z_{j}{% \bf b}_{j}\right\rangle+\lambda\left\langle\sum_{i=1}^{n}y_{i}{\bf b}_{i},\sum% _{j=1}^{n}z_{j}{\bf b}_{j}\right\rangle,

so it is linear in the first term. We have

i=1nxi𝐛i,j=1nyj𝐛j=i=1nxiyi¯=i=1nxi¯yi¯=i=1nyi𝐛i,j=1nxj𝐛j¯,\left\langle\sum_{i=1}^{n}x_{i}{\bf b}_{i},\sum_{j=1}^{n}y_{j}{\bf b}_{j}% \right\rangle=\sum_{i=1}^{n}x_{i}\overline{y_{i}}=\overline{\sum_{i=1}^{n}% \overline{x_{i}}y_{i}}=\overline{\left\langle\sum_{i=1}^{n}y_{i}{\bf b}_{i},% \sum_{j=1}^{n}x_{j}{\bf b}_{j}\right\rangle},

so it is conjugate symmetric. Lastly

i=1nxi𝐛i,j=1nxj𝐛j=i=1nxixi¯,\left\langle\sum_{i=1}^{n}x_{i}{\bf b}_{i},\sum_{j=1}^{n}x_{j}{\bf b}_{j}% \right\rangle=\sum_{i=1}^{n}x_{i}\overline{x_{i}},

and recall that xixi¯>0x_{i}\overline{x_{i}}>0 for xi0x_{i}\neq 0 so it is also positive definite. Thus we have an inner product.

Problem 34. Fill in the remaining details of the proof of Proposition 5.10, i.e. show that ,G\langle\cdot,\cdot\rangle_{G} is linear in the first argument, conjugate-symmetric, and positive-definite.

Solution: We repeatedly use the fact that ,\langle\cdot,\cdot\rangle is an inner product. Consider 𝐮,𝐯,𝐰V{\bf u},{\bf v},{\bf w}\in V and λ\lambda\in{\mathbb{C}}, then

𝐮+λ𝐯,𝐰G\displaystyle\langle{\bf u}+\lambda{\bf v},{\bf w}\rangle_{G} =1|G|hGπ(h)(𝐮+λ𝐯),π(h)𝐰\displaystyle=\frac{1}{|G|}\sum_{h\in G}\langle\pi(h)({\bf u}+\lambda{\bf v}),% \pi(h){\bf w}\rangle
=1|G|hGπ(h)𝐮,π(h)𝐮+λ1|G|hGπ(h)𝐯,π(h)𝐰\displaystyle=\frac{1}{|G|}\sum_{h\in G}\langle\pi(h){\bf u},\pi(h){\bf u}% \rangle+\lambda\frac{1}{|G|}\sum_{h\in G}\langle\pi(h){\bf v},\pi(h){\bf w}\rangle
=𝐮,𝐰G+λ𝐯,𝐰G,\displaystyle=\langle{\bf u},{\bf w}\rangle_{G}+\lambda\langle{\bf v},{\bf w}% \rangle_{G},

so it is linear in the first term. We have

𝐮,𝐯G=1|G|hGπ(h)𝐮,π(h)𝐯=1|G|hGπ(h)𝐯,π(h)𝐮¯=𝐯,𝐮G¯,\langle{\bf u},{\bf v}\rangle_{G}=\frac{1}{|G|}\sum_{h\in G}\langle\pi(h){\bf u% },\pi(h){\bf v}\rangle=\frac{1}{|G|}\sum_{h\in G}\overline{\langle\pi(h){\bf v% },\pi(h){\bf u}\rangle}=\overline{\langle{\bf v},{\bf u}\rangle_{G}},

so it is conjugate symmetric. Lastly

𝐯,𝐯G=1|G|hGπ(h)𝐯,π(h)𝐯,\langle{\bf v},{\bf v}\rangle_{G}=\frac{1}{|G|}\sum_{h\in G}\langle\pi(h){\bf v% },\pi(h){\bf v}\rangle,

and each π(h)𝐯,π(h)𝐯\langle\pi(h){\bf v},\pi(h){\bf v}\rangle is greater than zero for π(h)𝐯0\pi(h){\bf v}\neq 0 and zero otherwise. Thus ,G\langle\cdot,\cdot\rangle_{G} is positive definite and therefore an inner product.

Problem 35. Let (π,V)(\pi,V) be a finite-dimensional unitary representation of a group GG, with GG-invariant inner product ,\langle\cdot,\cdot\rangle. Show that the matrix of any π(g)\pi(g) with respect to a orthonormal basis for ,\langle\cdot,\cdot\rangle is unitary (recall that a matrix is unitary if M(=M¯)t=M1M^{*}(=\overline{M}{\,{}^{\mathrm{t}}\!}\,)=M^{-1}).

Solution: Let {𝐞1,,𝐞n}\{{\bf e}_{1},\ldots,{\bf e}_{n}\} be an orthonormal basis of VV and let MM be the matrix of π(g)\pi(g) with respect to this basis, for some gGg\in G. As ,\langle\cdot,\cdot\rangle is GG-invariant we have

M𝐞i,M𝐞j=𝐞i,𝐞j={1if i=j,0if ij.\langle M{\bf e}_{i},M{\bf e}_{j}\rangle=\langle{\bf e}_{i},{\bf e}_{j}\rangle% =\begin{cases}1\quad&\text{if }i=j,\\ 0\quad&\text{if }i\neq j.\end{cases}

So {M𝐞i}1in\{M{\bf e}_{i}\}_{1\leq i\leq n} is also an orthonormal basis for VV. Note that M𝐞iM{\bf e}_{i} is a column of the matrix MM, hence the columns of MM are an orthonormal basis of VV. Thus MMt¯=IdM\overline{M^{t}}={\,\mathrm{Id}} and we have that our matrix is unitary.

Problem 36. Show the following:
Lemma 5.13. Let (π1,U)(\pi_{1},U), (π2,V)(\pi_{2},V), and (π3,W)(\pi_{3},W) be representations of a group GG. Then

  1. (i)

    HomG(UV,W)=HomG(U,W)HomG(V,W)\mathrm{Hom}_{G}(U\oplus V,W)=\mathrm{Hom}_{G}(U,W)\oplus\mathrm{Hom}_{G}(V,W)

  2. (ii)

    HomG(W,UV)=HomG(W,U)HomG(W,V)\mathrm{Hom}_{G}(W,U\oplus V)=\mathrm{Hom}_{G}(W,U)\oplus\mathrm{Hom}_{G}(W,V)

Solution: Given RHom(UV,W)R\in\operatorname{Hom}(U\oplus V,W), we we define φ(R)=(φ1(R),φ2(R))Hom(U,W)Hom(V,W)\varphi(R)=(\varphi_{1}(R),\varphi_{2}(R))\in\mathrm{Hom}(U,W)\oplus\mathrm{% Hom}(V,W) by

φ1(R)u=R(u,0),φ2(R)v=R(0,v)uU,vV.\varphi_{1}(R)u=R(u,0),\quad\varphi_{2}(R)v=R(0,v)\qquad\forall u\in U,\,v\in V.

Similarly, define a map φ~:Hom(U,W)Hom(V,W)Hom(UV,W)\widetilde{\varphi}:\operatorname{Hom}(U,W)\oplus\operatorname{Hom}(V,W)% \rightarrow\operatorname{Hom}(U\oplus V,W) by

φ~(S,T)(u,v)=Su+Tv(u,v)UV.\widetilde{\varphi}(S,T)(u,v)=Su+Tv\qquad\forall(u,v)\in U\oplus V.

Routine linear algebra verifications show that all the maps above are linear in the relevant variables, and that φφ~(S,T)=(S,T)\varphi\widetilde{\varphi}(S,T)=(S,T) and φ~φ(R)=R\widetilde{\varphi}\varphi(R)=R, giving the identity

Hom(UV,W)=Hom(U,W)Hom(V,W).\mathrm{Hom}(U\oplus V,W)=\mathrm{Hom}(U,W)\oplus\mathrm{Hom}(V,W).

It remains to show that φ(HomG(UV,W))HomG(U,W)HomG(V,W)\varphi(\operatorname{Hom}_{G}(U\oplus V,W))\subset\mathrm{Hom}_{G}(U,W)\oplus% \mathrm{Hom}_{G}(V,W), and φ~(HomG(U,W)HomG(V,W))HomG(UV,W)\widetilde{\varphi}\big{(}\mathrm{Hom}_{G}(U,W)\oplus\mathrm{Hom}_{G}(V,W)\big% {)}\subset\mathrm{Hom}_{G}(U\oplus V,W). Given RHomG(UV,W)R\in\operatorname{Hom}_{G}(U\oplus V,W), we verify that φ(R)\varphi(R) intertwines with the GG-actions: for all uUu\in U,

φ1(R)(π1(g)u)=R(π1(g)u,0)=R(π1(g)u,π2(g)0)=R(π1π2(g)(u,0))=π3(g)R(u,0)=π3φ1(R)u,\displaystyle\varphi_{1}(R)(\pi_{1}(g)u)=R(\pi_{1}(g)u,0)=R(\pi_{1}(g)u,\pi_{2% }(g)0)=R\big{(}\pi_{1}\oplus\pi_{2}(g)(u,0)\big{)}=\pi_{3}(g)R(u,0)=\pi_{3}% \varphi_{1}(R)u,

showing that φ1(R)HomG(U,W)\varphi_{1}(R)\in\operatorname{Hom}_{G}(U,W). A similar computation gives φ2(R)HomG(V,W)\varphi_{2}(R)\in\operatorname{Hom}_{G}(V,W), hence φ(R)=(φ1(R),φ2(R))HomG(U,W)HomG(V,W)\varphi(R)=(\varphi_{1}(R),\varphi_{2}(R))\in\mathrm{Hom}_{G}(U,W)\oplus% \mathrm{Hom}_{G}(V,W). In the other direction, let SHomG(U,W)S\in\operatorname{Hom}_{G}(U,W) and THomG(V,W)T\in\operatorname{Hom}_{G}(V,W). Then for all (u,v)UV(u,v)\in U\oplus V,

φ~(S,T)π1π2(g)(u,v)=φ~(S,T)(π1(g)u,π2(g)v)=Sπ1(g)u+Tπ2(g)v\displaystyle\widetilde{\varphi}(S,T)\pi_{1}\oplus\pi_{2}(g)(u,v)=\widetilde{% \varphi}(S,T)(\pi_{1}(g)u,\pi_{2}(g)v)=S\pi_{1}(g)u+T\pi_{2}(g)v
=π3(g)Su+π3(g)Tv=π3(g)(Su+Tv)=π3(g)φ~(S,T)(u,v),\displaystyle=\pi_{3}(g)Su+\pi_{3}(g)Tv=\pi_{3}(g)(Su+Tv)=\pi_{3}(g)\widetilde% {\varphi}(S,T)(u,v),

showing that φ~(S,T)HomG(UV,W)\widetilde{\varphi}(S,T)\in\operatorname{Hom}_{G}(U\oplus V,W). (ii) is proved analogously.