Lecture 10

Problem 58. Prove Lemma 10.1.

Solution: Let hGh\in G. Note that conjugation by hh is a bijection, i.e. G={hgh1|gG}G=\{hgh^{-1}\,|\,g\in G\}. We will also make use of the fact that if ff is a class function f(g)=f(hgh1)f(g)=f(hgh^{-1}), for all gGg\in G. Then

π(f)π(h)\displaystyle\pi(f)\pi(h) =1|G|gGf(g)¯π(g)π(h),\displaystyle=\frac{1}{|G|}\sum_{g\in G}\overline{f(g)}\pi(g)\pi(h),
=1|G|gGf(hgh1)¯π(hgh1)π(h),\displaystyle=\frac{1}{|G|}\sum_{g\in G}\overline{f(hgh^{-1})}\pi(hgh^{-1})\pi% (h),
=1|G|gGf(hgh1)¯π(hg)=π(h)1|G|gGf(g)¯π(g)=π(h)π(f).\displaystyle=\frac{1}{|G|}\sum_{g\in G}\overline{f(hgh^{-1})}\pi(hg)=\pi(h)% \frac{1}{|G|}\sum_{g\in G}\overline{f(g)}\pi(g)=\pi(h)\pi(f).

As hh was arbitrary we have that π(f)\pi(f) is in HomG(V)\operatorname{Hom}_{G}(V).

Problem 59. Let (π,V)(\pi,V) and (ρ,U)(\rho,U) be two finite-dimensional representations of a finite group GG. Show that (π,V)(ρ,U)(\pi,V)\cong(\rho,U) if and only if

dimHomG(V,W)=dimHomG(U,W)\operatorname{dim}\operatorname{Hom}_{G}(V,W)=\operatorname{dim}\operatorname{% Hom}_{G}(U,W)

for all finite-dimensional representations (σ,W)(\sigma,W) of GG.

Solution: We have

χπ=σIrr(G)dimHomG(V,Wσ)χσ,χρ=σIrr(G)dimHomG(U,Wσ)χσ.\chi_{\pi}=\sum_{\sigma\in\mathrm{Irr}(G)}\operatorname{dim}\operatorname{Hom}% _{G}(V,W_{\sigma})\chi_{\sigma},\quad\chi_{\rho}=\sum_{\sigma\in\mathrm{Irr}(G% )}\operatorname{dim}\operatorname{Hom}_{G}(U,W_{\sigma})\chi_{\sigma}.

Thus, if dimHomG(V,W)=dimHomG(U,W)\operatorname{dim}\operatorname{Hom}_{G}(V,W)=\operatorname{dim}\operatorname{% Hom}_{G}(U,W) for all (σ,W)(\sigma,W), we have χπ=χρ\chi_{\pi}=\chi_{\rho}, hence (π,V)(ρ,U)(\pi,V)\cong(\rho,U) by Theorem 29.

On the other hand, if (π,V)(ρ,U)(\pi,V)\cong(\rho,U), then χπ=χρ\chi_{\pi}=\chi_{\rho}, hence

dimHomG(V,W)=χπ,χσG=χρ,χσG=dimHomG(U,W).\operatorname{dim}\operatorname{Hom}_{G}(V,W)=\langle\chi_{\pi},\chi_{\sigma}% \rangle_{G}=\langle\chi_{\rho},\chi_{\sigma}\rangle_{G}=\operatorname{dim}% \operatorname{Hom}_{G}(U,W).

Problem 60. Let (π,V)(\pi,V) be a representation of a group GG and HH a subgroup of GG. Show that

χπ|H(h)=χπ(h)hH.\chi_{\pi|_{H}}(h)=\chi_{\pi}(h)\qquad\forall\,h\in H.

Solution: Since π|H(h)=π(h)\pi|_{H}(h)=\pi(h) for all hHh\in H, trπ|H(h)=trπ(h)\operatorname{tr}\pi|_{H}(h)=\operatorname{tr}\pi(h), hence χπ|H=χπ\chi_{\pi|_{H}}=\chi_{\pi}.

Problem 61. Find the character table of A4A_{4}. Decompose the restriction of each irreducible representation of S4S_{4} to A4A_{4} into irreducibles.

Remark: When we say “decompose a representation into irreducibles”, we simply mean find out how many times each irreducible representation occurs in the decomposition. This is in contrast to if we were to ask for a “decomposition into irreducible subrepresentations”, which involves finding irreducible subrepresentations of the given representation and showing that their direct sum is the whole representation - this is a much harder task.

Solution: We start by determining the conjugacy classes of A4A_{4}. Recall the following:

Theorem 0.0.4.

A conjugacy class in SnS_{n} that is contained in AnA_{n} splits into two disjoint conjugacy classes in AnA_{n} if and only if its cycle type consists of distinct odd integers. If not, it remains a conjugacy class of A4A_{4}.

Thus, the conjugacy classes of A4A_{4} are

𝒟1={e},𝒟2={(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}{\mathcal{D}}_{1}=\{e\},\quad\quad{\mathcal{D}}_{2}=\{(1\,2)(3\,4),(1\,3)(2\,4% ),\,(1\,4)(2\,3)\}
𝒟3={(1 2 3),(1 4 2),(1 3 4),(2 4 3)},𝒟4={(1 3 2),(1 2 4),(1 4 3),(2 3 4)}.{\mathcal{D}}_{3}=\{(1\,2\,3),\,(1\,4\,2),\,(1\,3\,4),\,(2\,4\,3)\},\quad{% \mathcal{D}}_{4}=\{(1\,3\,2),\,(1\,2\,4),\,(1\,4\,3),\,(2\,3\,4)\}.

By Theorem 19, we then know that there are four irreducible representations of S4S_{4}, and the squares of their dimensions sum up to 1212. Recall the character table of S4S_{4}:

size: 1 6 3 8 6
ee (1 2)(1\;2) (1 2)(3 4)(1\;2)(3\;4) (1 2 3)(1\;2\;3) (1 2 3 4)(1\;2\;3\;4)
(Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1 1
(sgn,)(\mathrm{sgn},{\mathbb{C}}) 1 -1 1 1 -1
(π,W0)(\pi,W_{0}) 3 11 -1 0 -1
(sgnπ,W0)(\mathrm{sgn}\,\pi,W_{0}) 3 -1 -1 0 1
(ρ,V)(\rho,V) 2 0 2 -1 0

The trivial representation is of course an irreducible representation, and we see that the character of (π|A4,W0)(\pi|_{A_{4}},W_{0}) has norm one:

χπ|A4A42=112(132+3(1)2+8(0)2)=1,\|\chi_{\pi|_{A_{4}}}\|^{2}_{A_{4}}=\frac{1}{12}\big{(}1\cdot 3^{2}+3\cdot(-1)% ^{2}+8\cdot(0)^{2}\big{)}=1,

hence (π|A4,W0)(\pi|_{A_{4}},W_{0}) is irreducible. Since sgn=1\operatorname{sgn}=1 on A4A_{4}, restricting sgnπ\operatorname{sgn}\,\pi to A4A_{4} gives the same representation. We thus have

size: 1 3 4 4
ee 𝒟2{\mathcal{D}}_{2} 𝒟3{\mathcal{D}}_{3} 𝒟4{\mathcal{D}}_{4}
(Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1
(π|A4,W0)(\pi|_{A_{4}},W_{0}) 3 1-1 0 0

By checking the dimensions, we see that we are missing two one-dimensional representations (ψ1,)(\psi_{1},{\mathbb{C}}) and (ψ2,)(\psi_{2},{\mathbb{C}}). All the elements of 𝒟2{\mathcal{D}}_{2} have order two, hence the characters there must have order two in ×{\mathbb{C}}^{\times} (i.e. they are ±1)\pm 1), and all the elements of 𝒟3{\mathcal{D}}_{3} and 𝒟4{\mathcal{D}}_{4} have order three, hence the characters must be third roots of unity. Writing ω=e2πi/3\omega=e^{2\pi i/3}, we get

size: 1 3 4 4
ee 𝒟2{\mathcal{D}}_{2} 𝒟3{\mathcal{D}}_{3} 𝒟4{\mathcal{D}}_{4}
(Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1
(π|A4,W0)(\pi|_{A_{4}},W_{0}) 3 1-1 0 0
(ψ1,)(\psi_{1},{\mathbb{C}}) 1 ±1\pm 1 ωj1\omega^{j_{1}} ωk1\omega^{k_{1}}
(ψ2,)(\psi_{2},{\mathbb{C}}) 1 ±1\pm 1 ωj2\omega^{j_{2}} ωk2\omega^{k_{2}}

We now use column orthogonality with the first column to see that both ±1\pm 1S must in fact be +1+1s, and

ωj1+ωj2=1,ωk1+ωk2=1.\omega^{j_{1}}+\omega^{j_{2}}=-1,\quad\omega^{k_{1}}+\omega^{k_{2}}=-1.

We then get that j2=j1j_{2}=-j_{1}, k2=k1k_{2}=-k_{1}, and j1,k1=±1j_{1},k_{1}=\pm 1. Column orthogonality between the last two columns gives

ωj1k1+ωj2k2=1,\omega^{j_{1}-k_{1}}+\omega^{j_{2}-k_{2}}=-1,

so there are two solutions (each giving one of the characters ψ1,ψ2\psi_{1},\psi_{2}): j1=±1j_{1}=\pm 1. The completed table reads

size: 1 6 4 4
ee 𝒟2{\mathcal{D}}_{2} 𝒟3{\mathcal{D}}_{3} 𝒟4{\mathcal{D}}_{4}
(Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1
(π|A4,W0)(\pi|_{A_{4}},W_{0}) 3 1-1 0 0
(ψ1,)(\psi_{1},{\mathbb{C}}) 1 11 ω\omega ω¯\overline{\omega}
(ψ2,)(\psi_{2},{\mathbb{C}}) 1 11 ω¯\overline{\omega} ω\omega

The sign representation on S4S_{4} restricted to A4A_{4} is simply the trivial representation, while (π,W0)(\pi,W_{0}) and (sgnπ,W0)(\operatorname{sgn}\,\pi,W_{0}) restricted to A4A_{4} are both the irreducible three-dimensional irreducible representation.

It remains to decompose the restriction of the two-dimensional irreducible representation (ρ,V)(\rho,V) to A4A_{4}. Since A4A_{4} has no two-dimensional irreducibles, this must be the direct sum of two one-dimensional representations. We compute the inner product of χρ|A4\chi_{\rho|_{A_{4}}} with χψ1\chi_{\psi_{1}} and χψ2\chi_{\psi_{2}}:

χρ|A4,χψjA4=112i=14|𝒟i|χρ|A4(𝒟i)χψj(𝒟j)¯=112(21+321+4(1)ω+4(1)ω¯)=1,\langle\chi_{\rho|_{A_{4}}},\chi_{\psi_{j}}\rangle_{A_{4}}=\frac{1}{12}\sum_{i% =1}^{4}|{\mathcal{D}}_{i}|\chi_{\rho|_{A_{4}}}({\mathcal{D}}_{i})\overline{% \chi_{\psi_{j}}({\mathcal{D}}_{j})}=\frac{1}{12}\big{(}2\cdot 1+3\cdot 2\cdot 1% +4\cdot(-1)\cdot\omega+4\cdot(-1)\cdot\overline{\omega}\big{)}=1,

hence (ρ|A4,V)=(ψ1,)(ψ2,)(\rho|_{A_{4}},V)=(\psi_{1},{\mathbb{C}})\oplus(\psi_{2},{\mathbb{C}}).

Problem 62. Decompose (Q8){\mathbb{C}}(Q_{8}) into irreducible isotopic components.

Solution: The character table of Q8Q_{8} reads

size: 1 1 2 2 2
𝟏\mathbf{1} 𝟏\mathbf{-1} 𝐢\mathbf{i} 𝐣\mathbf{j} 𝐤\mathbf{k}
(Id,)({\,\mathrm{Id}},{\mathbb{C}}) 1 1 1 1 1
(πi,)(\pi_{i},{\mathbb{C}}) 11 11 11 1-1 1-1
(πj,)(\pi_{j},{\mathbb{C}}) 11 11 1-1 11 1-1
(πk,)(\pi_{k},{\mathbb{C}}) 11 11 1-1 1-1 11
(π,2)(\pi,{\mathbb{C}}^{2}) 22 2-2 0 0 0

Thus

(λ,(Q8))=(Id,)(πi,)(πj,)(πk,)2(π,2).(\lambda,{\mathbb{C}}(Q_{8}))=({\,\mathrm{Id}},{\mathbb{C}})\oplus(\pi_{i},{% \mathbb{C}})\oplus(\pi_{j},{\mathbb{C}})\oplus(\pi_{k},{\mathbb{C}})\oplus 2(% \pi,{\mathbb{C}}^{2}).

For each irreducible representation (σ,V)(\sigma,V), the isotopic component of σ\sigma in (λ,(Q8))(\lambda,{\mathbb{C}}(Q_{8})) is the image of the isotopic projector λσ\lambda_{\sigma}. For the four one-dimensional representations, we compute λσ(𝟏)\lambda_{\sigma}(\mathbf{1}):

λId(𝟏)\displaystyle\lambda_{{\,\mathrm{Id}}}(\mathbf{1}) =18(1𝟏+1(𝟏)+1𝐢+1(𝐢)+1(𝐣)+1(𝐣)+1(𝐤)+1(𝐤))𝟏\displaystyle={\textstyle\frac{1}{8}}\bigg{(}1\cdot\mathbf{1}+1\cdot(\mathbf{-% 1})+1\cdot\mathbf{i}+1\cdot(\mathbf{-i})+1\cdot(\mathbf{j})+1\cdot(\mathbf{-j}% )+1\cdot(\mathbf{k})+1\cdot(\mathbf{-k})\bigg{)}\mathbf{1}
=18(𝟏+(𝟏)+𝐢+(𝐢)+(𝐣)+(𝐣)+(𝐤)+(𝐤))\displaystyle={\textstyle\frac{1}{8}}\big{(}\mathbf{1}+(\mathbf{-1})+\mathbf{i% }+(\mathbf{-i})+(\mathbf{j})+(\mathbf{-j})+(\mathbf{k})+(\mathbf{-k})\big{)}
λπi(𝟏)\displaystyle\lambda_{\pi_{i}}(\mathbf{1}) =18(1𝟏+1(𝟏)+1𝐢+1(𝐢)+(1)(𝐣)+(1)(𝐣)+(1)(𝐤)+(1)(𝐤))𝟏\displaystyle={\textstyle\frac{1}{8}}\bigg{(}1\cdot\mathbf{1}+1\cdot(\mathbf{-% 1})+1\cdot\mathbf{i}+1\cdot(\mathbf{-i})+(-1)\cdot(\mathbf{j})+(-1)\cdot(% \mathbf{-j})+(-1)\cdot(\mathbf{k})+(-1)\cdot(\mathbf{-k})\bigg{)}\mathbf{1}
=18(𝟏+(𝟏)+𝐢+(𝐢)(𝐣)(𝐣)(𝐤)(𝐤))\displaystyle={\textstyle\frac{1}{8}}\big{(}\mathbf{1}+(\mathbf{-1})+\mathbf{i% }+(\mathbf{-i})-(\mathbf{j})-(\mathbf{-j})-(\mathbf{k})-(\mathbf{-k})\big{)}
λπj(𝟏)\displaystyle\lambda_{\pi_{j}}(\mathbf{1}) =18(1𝟏+1(𝟏)+(1)𝐢+(1)(𝐢)+1(𝐣)+1(𝐣)+(1)(𝐤)+(1)(𝐤))𝟏\displaystyle={\textstyle\frac{1}{8}}\bigg{(}1\cdot\mathbf{1}+1\cdot(\mathbf{-% 1})+(-1)\cdot\mathbf{i}+(-1)\cdot(\mathbf{-i})+1\cdot(\mathbf{j})+1\cdot(% \mathbf{-j})+(-1)\cdot(\mathbf{k})+(-1)\cdot(\mathbf{-k})\bigg{)}\mathbf{1}
=18(𝟏+(𝟏)𝐢(𝐢)+(𝐣)+(𝐣)(𝐤)(𝐤))\displaystyle={\textstyle\frac{1}{8}}\big{(}\mathbf{1}+(\mathbf{-1})-\mathbf{i% }-(\mathbf{-i})+(\mathbf{j})+(\mathbf{-j})-(\mathbf{k})-(\mathbf{-k})\big{)}
λπj(𝟏)\displaystyle\lambda_{\pi_{j}}(\mathbf{1}) =18(1𝟏+1(𝟏)+(1)𝐢+(1)(𝐢)+(1)(𝐣)+(1)(𝐣)+1(𝐤)+1(𝐤))𝟏\displaystyle={\textstyle\frac{1}{8}}\bigg{(}1\cdot\mathbf{1}+1\cdot(\mathbf{-% 1})+(-1)\cdot\mathbf{i}+(-1)\cdot(\mathbf{-i})+(-1)\cdot(\mathbf{j})+(-1)\cdot% (\mathbf{-j})+1\cdot(\mathbf{k})+1\cdot(\mathbf{-k})\bigg{)}\mathbf{1}
=18(𝟏+(𝟏)(𝐢)(𝐢)(𝐣)(𝐣)+𝐤+(𝐤))\displaystyle={\textstyle\frac{1}{8}}\big{(}\mathbf{1}+(\mathbf{-1})-(\mathbf{% i})-(\mathbf{-i})-(\mathbf{j})-(\mathbf{-j})+\mathbf{k}+(\mathbf{-k})\big{)}

For the two-dimensional representation, the (π,2)(\pi,{\mathbb{C}}^{2})-isotopic component is

λπ((Q8))=ker(Iλπ).\lambda_{\pi}\big{(}{\mathbb{C}}(Q_{8})\big{)}=\ker(I-\lambda_{\pi}).

Given any of the canonical basis elements gQ8g\in Q_{8}, we have

(Iλπ)=g218(21+(2)(-1))g=12g+12(g),(I-\lambda_{\pi})=g-2\cdot{\textstyle\frac{1}{8}}\big{(}2\cdot\textbf{1}+(-2)% \cdot(\textbf{-1})\big{)}g={\textstyle\frac{1}{2}}\cdot g+{\textstyle\frac{1}{% 2}}\cdot(-g),

hence the matrix of IλπI-\lambda_{\pi} w.r.t. the basis {𝟏,𝟏,𝐢,𝐢,𝐣,𝐣,𝐤,𝐤}\{\mathbf{1},\mathbf{-1},\mathbf{i},\mathbf{-i},\mathbf{j},\mathbf{-j},\mathbf% {k},\mathbf{-k}\} is

12(1100000011000000001100000011000000001100000011000000001100000011)\frac{1}{2}\left(\begin{matrix}1&1&0&0&0&0&0&0\\ 1&1&0&0&0&0&0&0\\ 0&0&1&1&0&0&0&0\\ 0&0&1&1&0&0&0&0\\ 0&0&0&0&1&1&0&0\\ 0&0&0&0&1&1&0&0\\ 0&0&0&0&0&0&1&1\\ 0&0&0&0&0&0&1&1\end{matrix}\right)

The kernel of this is then spanned by 𝟏(𝟏)\mathbf{1}-(\mathbf{-1}), 𝐢(𝐢)\mathbf{i}-(\mathbf{-i}), 𝐣(𝐣)\mathbf{j}-(\mathbf{-j}), 𝐤(𝐤)\mathbf{k}-(\mathbf{-k}), giving

(λ,(Q8))=\displaystyle(\lambda,{\mathbb{C}}(Q_{8}))= (λ,(𝟏+(𝟏)+𝐢+(𝐢)+(𝐣)+(𝐣)+(𝐤)+(𝐤)))\displaystyle\bigg{(}\lambda,{\mathbb{C}}\big{(}\mathbf{1}+(\mathbf{-1})+% \mathbf{i}+(\mathbf{-i})+(\mathbf{j})+(\mathbf{-j})+(\mathbf{k})+(\mathbf{-k})% \big{)}\bigg{)}
(λ,(𝟏+(𝟏)+𝐢+(𝐢)(𝐣)(𝐣)(𝐤)(𝐤)))\displaystyle\oplus\bigg{(}\lambda,{\mathbb{C}}\big{(}\mathbf{1}+(\mathbf{-1})% +\mathbf{i}+(\mathbf{-i})-(\mathbf{j})-(\mathbf{-j})-(\mathbf{k})-(\mathbf{-k}% )\big{)}\bigg{)}
(λ,(𝟏+(𝟏)𝐢(𝐢)+(𝐣)+(𝐣)(𝐤)(𝐤)))\displaystyle\oplus\bigg{(}\lambda,{\mathbb{C}}\big{(}\mathbf{1}+(\mathbf{-1})% -\mathbf{i}-(\mathbf{-i})+(\mathbf{j})+(\mathbf{-j})-(\mathbf{k})-(\mathbf{-k}% )\big{)}\bigg{)}
(λ,(𝟏+(𝟏)(𝐢)(𝐢)(𝐣)(𝐣)+𝐤+(𝐤)))\displaystyle\oplus\bigg{(}\lambda,{\mathbb{C}}\big{(}\mathbf{1}+(\mathbf{-1})% -(\mathbf{i})-(\mathbf{-i})-(\mathbf{j})-(\mathbf{-j})+\mathbf{k}+(\mathbf{-k}% )\big{)}\bigg{)}
(λ,span{𝟏(𝟏),𝐢(𝐢),𝐣(𝐣),𝐤(𝐤)}).\displaystyle\oplus\bigg{(}\lambda,\mathrm{span}\big{\{}\mathbf{1}-(\mathbf{-1% }),\mathbf{i}-(\mathbf{-i}),\mathbf{j}-(\mathbf{-j}),\mathbf{k}-(\mathbf{-k})% \big{\}}\bigg{)}.

Problem 63. Let XX be a finite set on which a group GG acts. Consider the permutation representation (π,(X))(\pi,{\mathbb{C}}(X)) of GG on the free vector space of XX.

  1. (a)

    Show that dim(X)G\operatorname{dim}{\mathbb{C}}(X)^{G} (recall that (X)G={v(X)G|π(g)v=v}{\mathbb{C}}(X)^{G}=\{v\in{\mathbb{C}}(X)^{G}\,|\,\pi(g)v=v\}) is equal to the number of GG-orbits in XX.

  2. (b)

    Compute χπ,χIdG\langle\chi_{\pi},\chi_{{\,\mathrm{Id}}}\rangle_{G}, and use it to show Burnside’s lemma: the number of GG-orbits in XX is equal to

    1|G|gG#{xX|gx=x},\frac{1}{|G|}\sum_{g\in G}\#\{x\in X\,|\,g\cdot x=x\},

    i.e. the average number of fixed points of the group elements.

Solution:

  1. (a)

    We write X=X1X2XdX=X_{1}\sqcup X_{2}\sqcup\ldots\sqcup X_{d}, where each XiX_{i} is a GG-orbit in XX. For each 1id1\leq i\leq d, let yi=xXixy_{i}=\sum_{x\in X_{i}}x. Clearly gyi=yig\cdot y_{i}=y_{i}, for all gGg\in G so each yiy_{i} is in (X)G{\mathbb{C}}(X)^{G}. Also note that, as the orbits are disjoint each yiy_{i} is disjoint and the set {yi}1id\{y_{i}\}_{1\leq i\leq d} is linearly independent. To show it spans (X)G{\mathbb{C}}(X)^{G} let xXzxx(X)G\sum_{x\in X}z_{x}x\in{\mathbb{C}}(X)^{G} so gxXzxx=xXzxxg\cdot\sum_{x\in X}z_{x}x=\sum_{x\in X}z_{x}x for all gGg\in G. We can partition this into GG-orbits to get

    gXiXxXizxx=XiXxXizxxg\cdot\sum_{X_{i}\subseteq X}\sum_{x\in X_{i}}z_{x}x=\sum_{X_{i}\subseteq X}% \sum_{x\in X_{i}}z_{x}x

    and thus for each orbit we have gxXizxx=xXizxxg\cdot\sum_{x\in X_{i}}z_{x}x=\sum_{x\in X_{i}}z_{x}x and for each xXix\in X_{i}, zx=zg1xz_{x}=z_{g^{-}1}\cdot x. Thus all the zxz_{x} are the same for all xXix\in X_{i} and xXizxxyi\sum_{x\in X_{i}}z_{x}x\in{\mathbb{C}}y_{i}. The set {yi}1id\{y_{i}\}_{1\leq i\leq d} therefore spans (X)G{\mathbb{C}}(X)^{G} and hence is a basis so dim(X)G=d\operatorname{dim}{\mathbb{C}}(X)^{G}=d.

    Functional method: We write X=X1X2XdX=X_{1}\sqcup X_{2}\sqcup\ldots\sqcup X_{d}, where each XiX_{i} is a GG-orbit in XX. For each i=1,,di=1,\ldots,d, let fiVf_{i}\in V be the function defined through

    fi(x)={1ifxXi0otherwise.f_{i}(x)=\begin{cases}1\quad&\mathrm{if\;}x\in X_{i}\\ 0\quad&\mathrm{otherwise.}\end{cases}

    Noting that xXig1xXigGx\in X_{i}\Leftrightarrow g^{-1}\cdot x\in X_{i}\;\forall g\in G, we see that each fiVGf_{i}\in V^{G}. Furthermore, since the support of fif_{i} is XiX_{i}, and the XiX_{i} are all disjoint, the set {fi}i=1,,d\{f_{i}\}_{i=1,\ldots,d} is linearly independent. We show that it spans VGV^{G}: given fVGf\in V^{G}, we have f(x)=[π(g)f](x)=f(g1x)f(x)=[\pi(g)f](x)=f(g^{-1}\cdot x) for all gGg\in G, xXx\in X. In particular, ff is constant on each XiX_{i}, allowing us to write

    f=(f|X1)f1+(f|X2)f2++(f|Xd)fd.f=(f|_{X_{1}})f_{1}+(f|_{X_{2}})f_{2}+\ldots+(f|_{X_{d}})f_{d}.

    The set {fi}i=1,,d\{f_{i}\}_{i=1,\ldots,d} is therefore a basis of VGV^{G}, giving dimVG=d\operatorname{dim}V^{G}=d, which is the number of GG-orbits in XX.

  2. (b)

    By Lemma 9.4, we have

    χπ,χIdG=1|G|gGχπ(g)=dimVG=d=#(G-orbits in X).\langle\chi_{\pi},\chi_{{\,\mathrm{Id}}}\rangle_{G}=\frac{1}{|G|}\sum_{g\in G}% \chi_{\pi}(g)=\operatorname{dim}V^{G}=d=\#(G\text{-orbits in }X).

    From Problem 46,

    χπ(g)=#{xX|gx=x},\chi_{\pi}(g)=\#\{x\in X\,|\,g\cdot x=x\},

    which, when substituted into the above identity, gives

    1|G|gG#{xX|gx=x}=#(G-orbits in X),\frac{1}{|G|}\sum_{g\in G}\#\{x\in X\,|\,g\cdot x=x\}=\#(G\text{-orbits in }X),

    i.e. Burnside’s lemma.