Lecture 18

Problem 93. Let λn\lambda\vdash n. Given a Young tableau t𝐘𝐓λt\in\mathbf{YT}^{\lambda} and σSn\sigma\in S_{n}, show that C(t)C(t) is a subgroup of SnS_{n} and that

σC(t)σ1=C(σt).\sigma C(t)\sigma^{-1}=C(\sigma\cdot t).

Solution: Let gC(t)g\in C(t), then if gg stabilises the columns of tt so does g1g^{-1}. Additionally suppose hGh\in G, then (gh)t=g(ht)=gt=t(gh)\cdot t=g\cdot(h\cdot t)=g\cdot t=t. Thus C(t)C(t) is a subgroup of SnS_{n}.

Given gC(t)g\in C(t), we have that σgσ1(σt)=σ(gt)\sigma g\sigma^{-1}\cdot(\sigma\cdot t)=\sigma\cdot(g\cdot t). Since gC(t)g\in C(t), the entries of the columns of gtg\cdot t are the same as those of tt, hence the entries of the columns of σ(gt)\sigma\cdot(g\cdot t) are the same as those of σt\sigma\cdot t, i.e. σgσ1C(σt)\sigma g\sigma^{-1}\in C(\sigma\cdot t). This shows that σC(t)σ1C(σt)\sigma C(t)\sigma^{-1}\subset C(\sigma\cdot t). By symmetry (i.e. replacing tt with σt\sigma\cdot t, and σ\sigma with σ1\sigma^{-1} in the previous argument), we then obtain σ1C(σt)σC(t)\sigma^{-1}C(\sigma\cdot t)\sigma\subset C(t), hence σC(t)σ1=C(σt)\sigma C(t)\sigma^{-1}=C(\sigma\cdot t).

Problem 94. Write out the details of the proof of Theorem 18.6.

Solution: If 𝒮λW{\mathcal{S}}^{\lambda}\subseteq W then we are done so suppose 𝒮λW{\mathcal{S}}^{\lambda}\nsubseteq W. As 𝒮λ{\mathcal{S}}^{\lambda} is irreducible then W𝒮λW\nsubseteq{\mathcal{S}}^{\lambda} and thus 𝒮λW={0}{\mathcal{S}}^{\lambda}\cap W=\{0\}. By Problem 92, (π,λ)(\pi,{\mathcal{M}}^{\lambda}) is unitary so λ=𝒮λ(𝒮λ){\mathcal{M}}^{\lambda}={\mathcal{S}}^{\lambda}\oplus\left({\mathcal{S}}^{% \lambda}\right)^{\perp}. Thus W(𝒮λ)W\subseteq\left({\mathcal{S}}^{\lambda}\right)^{\perp}.