Lecture 1

Remark:

We elaborate on two ways of checking where a map π:GGL(V)\pi:G\rightarrow\mathrm{GL}(V) is actually a representation. This point was discussed a bit in Lecture 1, but since it will be used frequently throughout the course, I would like to emphasise this a bit further:

  1. (i)

    Assume that a rule or formula is given for π(g)\pi(g) for every gGg\in G. In order to verify that (π,V)(\pi,V) really is a representation, one needs to either check or show that π(gh)=π(g)π(h)\pi(gh)=\pi(g)\pi(h) for all g,hGg,h\in G.

  2. (ii)

    Frequently, we will just give the operators π(g1),π(gk)\pi(g_{1}),\ldots\pi(g_{k}) for a set of generators g1,,gkg_{1},\ldots,g_{k} of a group GG. Since every element of GG can be written as a word in g1,,gkg_{1},\ldots,g_{k}, if π\pi is required to be a homomorphism, then there is no choice in the values of π(g)\pi(g) for the other group elements gg: π(g)\pi(g) must be the product of the π(gi)\pi(g_{i})s corresponding to the decomposition of gg into a product of gig_{i}s. In order for this procedure to give a well-defined homomorphism π\pi on all of GG, it is both necessary and sufficient that the π(gi)\pi(g_{i})s satisfy the same relations as the gig_{i}s. (This is a general fact about any group homomorphism, not just ones into GL(V)\mathrm{GL}(V)).

Compare the phrasing of problems 12 and 13 below!

Problem 12. Verify that (π,3)(\pi,\mathbb{C}^{3}) is a representation of S3S_{3}, where π(σ)GL3()\pi(\sigma)\in\mathrm{GL}_{3}(\mathbb{C}) is defined via

π(σ)(z1z2z3)=(zσ1(1)zσ1(2)zσ1(3))(z1z2z3)3.\pi(\sigma)\left(\begin{matrix}z_{1}\\ z_{2}\\ z_{3}\end{matrix}\right)=\left(\begin{matrix}z_{\sigma^{-1}(1)}\\ z_{\sigma^{-1}(2)}\\ z_{\sigma^{-1}(3)}\end{matrix}\right)\qquad\forall\left(\begin{matrix}z_{1}\\ z_{2}\\ z_{3}\end{matrix}\right)\in\mathbb{C}^{3}.

Solution: The operators π(σ)\pi(\sigma) are clearly linear (it is stated in the problem that they are in GL3()\operatorname{GL}_{3}({\mathbb{C}})), so it remains to check that π\pi is a homomorphism. We compute the action of a group product on a vector:

π(στ)(z1z2z3)\displaystyle\pi(\sigma\tau)\left(\begin{matrix}z_{1}\\ z_{2}\\ z_{3}\end{matrix}\right) =π(στ)(z1𝐞1+z2𝐞2+z3𝐞3)=z1𝐞στ(1)+z2𝐞στ(2)+z3𝐞στ(3)\displaystyle=\pi(\sigma\tau)\left(z_{1}{\bf e}_{1}+z_{2}{\bf e}_{2}+z_{3}{\bf e% }_{3}\right)=z_{1}{\bf e}_{\sigma\tau(1)}+z_{2}{\bf e}_{\sigma\tau(2)}+z_{3}{% \bf e}_{\sigma\tau(3)}
=z1𝐞σ(τ(1))+z2𝐞σ(τ(2))+z3𝐞σ(τ(3))=zτ1(1)𝐞σ(1)+zτ1(2)𝐞σ(2)+zτ1(3)𝐞σ(3)\displaystyle=z_{1}{\bf e}_{\sigma(\tau(1))}+z_{2}{\bf e}_{\sigma(\tau(2))}+z_% {3}{\bf e}_{\sigma(\tau(3))}=z_{\tau^{-1}(1)}{\bf e}_{\sigma(1)}+z_{\tau^{-1}(% 2)}{\bf e}_{\sigma(2)}+z_{\tau^{-1}(3)}{\bf e}_{\sigma(3)}
=π(σ)(zτ1(1)𝐞1+zτ1(2)𝐞2+zτ1(3)𝐞3)=π(σ)(zτ1(1)zτ1(2)zτ1(3))=π(σ)π(τ)(z1z2z3),\displaystyle=\pi(\sigma)\left(z_{\tau^{-1}(1)}{\bf e}_{1}+z_{\tau^{-1}(2)}{% \bf e}_{2}+z_{\tau^{-1}}(3){\bf e}_{3}\right)=\pi(\sigma)\left(\begin{matrix}z% _{\tau^{-1}(1)}\\ z_{\tau^{-1}(2)}\\ z_{\tau^{-1}(3)}\end{matrix}\right)=\pi(\sigma)\pi(\tau)\left(\begin{matrix}z_% {1}\\ z_{2}\\ z_{3}\end{matrix}\right),

showing that π\pi is indeed a homomorphism.

Problem 13. Writing D3=r,s|r3=s2=rsrs=eD_{3}=\langle r,s|r^{3}=s^{2}=rsrs=e\rangle, let ρ(r),ρ(s)GL2()\rho(r),\rho(s)\in\mathrm{GL}_{2}(\mathbb{C}) be given by

ρ(r)=(cos(2π/3)sin(2π/3)sin(2π/3)cos(2π/3)),ρ(s)=(1001).\rho(r)=\left(\begin{matrix}\cos(2\pi/3)&-\sin(2\pi/3)\\ \sin(2\pi/3)&\cos(2\pi/3)\end{matrix}\right),\qquad\rho(s)=\left(\begin{matrix% }1&0\\ 0&-1\end{matrix}\right).

Show that these operators define a representation (ρ,2)(\rho,\mathbb{C}^{2}) of D3D_{3}.

Solution: To check that the operators define a representation of GG, we simply to need to verify that ρ(r)\rho(r) and ρ(s)\rho(s) satisfy the same relations as rr and ss. We check this directly:

ρ(r)3=(cos(2π/3)sin(2π/3)sin(2π/3)cos(2π/3))3=(cos(2π)sin(2π)sin(2π)cos(2π))=(1001),\rho(r)^{3}=\left(\begin{matrix}\cos(2\pi/3)&-\sin(2\pi/3)\\ \sin(2\pi/3)&\cos(2\pi/3)\end{matrix}\right)^{3}=\left(\begin{matrix}\cos(2\pi% )&-\sin(2\pi)\\ \sin(2\pi)&\cos(2\pi)\end{matrix}\right)=\left(\begin{matrix}1&0\\ 0&1\end{matrix}\right),

and

ρ(s)2=(1001)2=(1001).\rho(s)^{2}=\left(\begin{matrix}1&0\\ 0&-1\end{matrix}\right)^{2}=\left(\begin{matrix}1&0\\ 0&1\end{matrix}\right).

For the other group relation, we have

ρ(s)ρ(r)=(1001)(cos(2π/3)sin(2π/3)sin(2π/3)cos(2π/3))=(cos(2π/3)sin(2π/3)sin(2π/3)cos(2π/3)),\rho(s)\rho(r)=\left(\begin{matrix}1&0\\ 0&-1\end{matrix}\right)\left(\begin{matrix}\cos(2\pi/3)&-\sin(2\pi/3)\\ \sin(2\pi/3)&\cos(2\pi/3)\end{matrix}\right)=\left(\begin{matrix}\cos(2\pi/3)&% -\sin(2\pi/3)\\ -\sin(2\pi/3)&-\cos(2\pi/3)\end{matrix}\right),

and

ρ(r)1ρ(s)=(cos(2π/3)sin(2π/3)sin(2π/3)cos(2π/3))(1001)=(cos(2π/3)sin(2π/3)sin(2π/3)cos(2π/3)),\rho(r)^{-1}\rho(s)=\left(\begin{matrix}\cos(-2\pi/3)&-\sin(-2\pi/3)\\ \sin(-2\pi/3)&\cos(-2\pi/3)\end{matrix}\right)\left(\begin{matrix}1&0\\ 0&-1\end{matrix}\right)=\left(\begin{matrix}\cos(2\pi/3)&-\sin(2\pi/3)\\ -\sin(2\pi/3)&-\cos(2\pi/3)\end{matrix}\right),

which are equal.

Problem 14.

  1. (a)

    Find the matrices of all the elements of S3S_{3} for the permutation representation (π,3)(\pi,{\mathbb{C}}^{3}), with respect to the basis 𝐞1,𝐞2,𝐞3{\bf e}_{1},{\bf e}_{2},{\bf e}_{3}.

  2. (b)

    Find another basis such that the matrices all take the form

    (1000??0??),\begin{pmatrix}1&0&0\\ 0&?&?\\ 0&?&?\end{pmatrix},

    and determine the unknown entries for your basis.

Solution:

  1. (a)

    First note that π((1))=Id3\pi((1))={\,\mathrm{Id}}\in{\mathbb{C}}^{3}. We then find the matrices for a generating set of S3S_{3}. We have

    π((12))𝐞1=𝐞2,π((12))𝐞2=𝐞1,π((12))𝐞3=𝐞3,\pi((12)){\bf e}_{1}={\bf e}_{2},\ \pi((12)){\bf e}_{2}={\bf e}_{1},\ \pi((12)% ){\bf e}_{3}={\bf e}_{3},

    and

    π((23))𝐞1=𝐞1,π((23))𝐞2=𝐞3,π((23))𝐞3=𝐞2.\pi((23)){\bf e}_{1}={\bf e}_{1},\ \pi((23)){\bf e}_{2}={\bf e}_{3},\ \pi((23)% ){\bf e}_{3}={\bf e}_{2}.

    This gives us

    π((12))=(010100001) and π((23))=(100001010).\pi((12))=\begin{pmatrix}0&1&0\\ 1&0&0\\ 0&0&1\end{pmatrix}\text{ and }\pi((23))=\begin{pmatrix}1&0&0\\ 0&0&1\\ 0&1&0\end{pmatrix}.

    As π\pi is a homomorphism we can compute the remaining matrices by taking the product of the matrices corresponding to each generator. Thus

    π((123))=π((12))π((23))=(010100001)(100001010)=(001100010).\pi((123))=\pi((12))\pi((23))=\begin{pmatrix}0&1&0\\ 1&0&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}1&0&0\\ 0&0&1\\ 0&1&0\end{pmatrix}=\begin{pmatrix}0&0&1\\ 1&0&0\\ 0&1&0\end{pmatrix}.

    By a similar argument we get

    π((132))=(010001100) and π((13))=(001010100).\pi((132))=\begin{pmatrix}0&1&0\\ 0&0&1\\ 1&0&0\end{pmatrix}\text{ and }\pi((13))=\begin{pmatrix}0&0&1\\ 0&1&0\\ 1&0&0\end{pmatrix}.
  2. (b)

    First we note that for any σS3\sigma\in S_{3} we have

    π(σ)(𝐞1+𝐞2+𝐞3)=𝐞1+𝐞2+𝐞3,\pi(\sigma)({\bf e}_{1}+{\bf e}_{2}+{\bf e}_{3})={\bf e}_{1}+{\bf e}_{2}+{\bf e% }_{3},

    so we pick 𝐯1=𝐞1+𝐞2+𝐞3{\bf v}_{1}={\bf e}_{1}+{\bf e}_{2}+{\bf e}_{3} to be our first basis element. Furthermore if we have π(σ)𝐯=𝐯1\pi(\sigma){\bf v}={\bf v}_{1} for some σS3\sigma\in S_{3} then 𝐯=𝐯1{\bf v}={\bf v}_{1} so our matrices will all take the form

    (1000??0??).\begin{pmatrix}1&0&0\\ 0&?&?\\ 0&?&?\end{pmatrix}.

    We then have a choice for our other two basis vectors. Let 𝐯2=𝐞1𝐞2{\bf v}_{2}={\bf e}_{1}-{\bf e}_{2} and 𝐯3=𝐞1𝐞3{\bf v}_{3}={\bf e}_{1}-{\bf e}_{3}. Then {𝐯1,𝐯2,𝐯3}\{{\bf v}_{1},{\bf v}_{2},{\bf v}_{3}\} clearly forms a basis of 3{\mathbb{C}}^{3} so we just need to compute each of the matrices. We proceed in a similar way to part (a), so

    π((12))=(100011001) and π((23))=(100001010).\pi((12))=\begin{pmatrix}1&0&0\\ 0&-1&-1\\ 0&0&1\end{pmatrix}\text{ and }\pi((23))=\begin{pmatrix}1&0&0\\ 0&0&1\\ 0&1&0\end{pmatrix}.

    Thus the remaining matrices are

    π((123))=(100011010)π((132))=(100001011) and π((13))=(100010011).\pi((123))=\begin{pmatrix}1&0&0\\ 0&-1&-1\\ 0&1&0\end{pmatrix}\text{, }\pi((132))=\begin{pmatrix}1&0&0\\ 0&0&1\\ 0&-1&-1\end{pmatrix}\text{ and }\pi((13))=\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&-1&-1\end{pmatrix}.

Problem 15. Let (π,V)(\pi,V) and (ρ,W)(\rho,W) be two representations of a group GG. Show that (πρ,VW)(\pi\oplus\rho,V\oplus W) is a representation of GG, where

πρ(g)(v,w):=(π(g)v,ρ(g)w)gG,vV,wW.\pi\oplus\rho(g)(v,w):=(\pi(g)v,\rho(g)w)\qquad\forall g\in G,\,v\in V,\,w\in W.

Remark: this is called the (direct) sum of two representations.

Solution: Given vector spaces V,WV,W, and any SHom(V)S\in\operatorname{Hom}(V), THom(W)T\in\operatorname{Hom}(W), the map ST:VWVWS\oplus T:V\oplus W\rightarrow V\oplus W defined by

(ST)(v,w):=(Sv,Tw)vV,wW(S\oplus T)(v,w):=(Sv,Tw)\qquad\forall v\in V,\,w\in W

is in Hom(VW)\operatorname{Hom}(V\oplus W), since for all α,β\alpha,\beta\in{\mathbb{C}} and v1,v2V,w1,w2Wv_{1},v_{2}\in V,w_{1},w_{2}\in W,

(ST)(α(v1,w1)+β(v2,w2))\displaystyle(S\oplus T)\big{(}\alpha(v_{1},w_{1})+\beta(v_{2},w_{2})\big{)} =(ST)(αv1+βv2,αw1+βw2)=(S(αv1+βv2),T(αw1+βw2))\displaystyle=(S\oplus T)\big{(}\alpha v_{1}+\beta v_{2},\alpha w_{1}+\beta w_% {2}\big{)}=\big{(}S(\alpha v_{1}+\beta v_{2}),T(\alpha w_{1}+\beta w_{2})\big{)}
=(αSv1+βSv2,αTw1+βTw2)=α(Sv1,Tw1)+β(Sv2,Tw2)\displaystyle=\big{(}\alpha Sv_{1}+\beta Sv_{2},\alpha Tw_{1}+\beta Tw_{2}\big% {)}=\alpha(Sv_{1},Tw_{1})+\beta(Sv_{2},Tw_{2})
=α(ST)(v1,w1)+β(ST)(v2,w2).\displaystyle=\alpha(S\oplus T)(v_{1},w_{1})+\beta(S\oplus T)(v_{2},w_{2}).

Moreover, if SGL(V)S\in\operatorname{GL}(V) and TGL(W)T\in\operatorname{GL}(W), then STGL(VW),S\oplus T\in\operatorname{GL}(V\oplus W), as

S1T1(ST(v,w))=S1T1(Sv,Tw)=(v,w).S^{-1}\oplus T^{-1}\big{(}S\oplus T(v,w)\big{)}=S^{-1}\oplus T^{-1}(Sv,Tw)=(v,% w).

Applying this to πρ(g)=π(g)ρ(g)\pi\oplus\rho(g)=\pi(g)\oplus\rho(g), we have πρ(g)GL(VW),\pi\oplus\rho(g)\in\operatorname{GL}(V\oplus W), so it remains to show that gπρ(g)g\mapsto\pi\oplus\rho(g) is a homomorphism. We compute the image of a product: for all g,hGg,h\in G, vVv\in V, wWw\in W, we have

πρ(gh)(v,w)=\displaystyle\pi\oplus\rho(gh)(v,w)= (π(gh)v,ρ(gh)w)=(π(g)π(h)v,ρ(g)ρ(h)w)\displaystyle(\pi(gh)v,\rho(gh)w)=(\pi(g)\pi(h)v,\rho(g)\rho(h)w)
=πρ(g)(π(h)v,ρ(h)w)=(πρ(g))(πρ(h))(v,w),\displaystyle=\pi\oplus\rho(g)(\pi(h)v,\rho(h)w)=\big{(}\pi\oplus\rho(g)\big{)% }\big{(}\pi\oplus\rho(h)\big{)}(v,w),

where we used that π\pi and ρ\rho are homomorphisms for the second equality. This shows that πρ\pi\oplus\rho is a homomorphism.

Problem 16. Let (π,V)(\pi,V) be a representation of a group GG. Given a subgroup H<GH<G, show that (π|H,V)(\pi|_{H},V) is a representation of HH.

Solution: Since hH<Gh\in H<G, and π:GGL(V),\pi:G\rightarrow\operatorname{GL}(V), we have that π|H(h)=π(h)GL(V)\pi|_{H}(h)=\pi(h)\in\operatorname{GL}(V) for all hHh\in H. It remains to show that π|H\pi|_{H} is a homomorphism. For any h1,h2Hh_{1},h_{2}\in H, we have

π|H(h1h2)=π(h1h2)=π(h1)π(h2)=π|H(h1)π|H(h2)\pi|_{H}(h_{1}h_{2})=\pi(h_{1}h_{2})=\pi(h_{1})\pi(h_{2})=\pi|_{H}(h_{1})\pi|_% {H}(h_{2})

(the third equality holding since π\pi is a homomorphism for GG).

Problem 17. Given a group action GXG\circlearrowright X, let V={f:X}V=\{f:X\rightarrow\mathbb{C}\}.

a) Show that (π,V)(\pi,V) is a representation of GG, where for every gGg\in G and fVf\in V, π(g)fV\pi(g)f\in V is defined via the formula

(π(g)f)(x)=f(g1x)xX.\big{(}\pi(g)f\big{)}(x)=f(g^{-1}\cdot x)\qquad\forall x\in X.

b) Show that (π~,V)(\widetilde{\pi},V) is a not a representation of GG, where for every gGg\in G and fVf\in V, π~(g)fV\widetilde{\pi}(g)f\in V is defined via the formula

(π~(g)f)(x)=f(gx)xX.\big{(}\widetilde{\pi}(g)f\big{)}(x)=f(g\cdot x)\qquad\forall x\in X.

Solution: We first verify that π(g)\pi(g) is linear: given α,β\alpha,\beta\in{\mathbb{C}}, f1,f2Vf_{1},f_{2}\in V, and xXx\in X,

[π(g)(αf1+βf2)](x)=[αf1+βf2](g1x)=αf1(g1x)+βf2(g1x)=α[π(g)f1](x)+β[π(g)f2](x).[\pi(g)(\alpha f_{1}+\beta f_{2})](x)=[\alpha f_{1}+\beta f_{2}](g^{-1}\cdot x% )=\alpha f_{1}(g^{-1}\cdot x)+\beta f_{2}(g^{-1}\cdot x)=\alpha[\pi(g)f_{1}](x% )+\beta[\pi(g)f_{2}](x).

Next we show that π\pi is a homomorphism: given g,hGg,h\in G, fVf\in V, and xXx\in X, we have

[π(gh)f](x)=f((gh)1x)=f(h1(g1x))=[π(h)f](g1x)=[π(g)(π(h)f)](x).[\pi(gh)f](x)=f\big{(}(gh)^{-1}\cdot x\big{)}=f\big{(}h^{-1}\cdot(g^{-1}\cdot x% )\big{)}=[\pi(h)f](g^{-1}\cdot x)=[\pi(g)(\pi(h)f)](x).

For part (b), we simply observe that the above calculation gives π~(gh)=π~(h)π~(g)\widetilde{\pi}(gh)=\widetilde{\pi}(h)\widetilde{\pi}(g).

Problem 18. Prove the following:

Prop. 1.11 Let GG be a finite group and (π,)(\pi,{\mathbb{C}}) a representation of GG. Show that for every gGg\in G, there exists ng{0,1,2,|G|1}n_{g}\in\{0,1,2,\ldots|G|-1\} such that

π(g)=e2πing/|G|.\pi(g)=e^{2\pi in_{g}/|G|}.

Solution: Since GL()=×\operatorname{GL}({\mathbb{C}})={\mathbb{C}}^{\times}, for each gGg\in G, π(g)=zg×\pi(g)=z_{g}\in{\mathbb{C}}^{\times}. By Lagrange’s theorem, g|G|=e,g^{|G|}=e, hence

1=π(e)=π(g|G|)=π(g)|G|=zg|G|,1=\pi(e)=\pi(g^{|G|})=\pi(g)^{|G|}=z_{g}^{|G|},

hence zgz_{g} is a |G||G|-th root of unity, and may therefore be written as e2πij/|G|e^{2\pi ij/|G|} for some j{1,,|G|}j\in\{1,\ldots,|G|\}.

Problem 19. Find all one-dimensional representations of D4D_{4}.

Solution: Let (π,v)(\pi,{\mathbb{C}}v) be a one-dimensional vector space. Thus π(r)v=λrv\pi(r)v=\lambda_{r}v and π(s)=λsv\pi(s)=\lambda_{s}v for some λr,λs\lambda_{r},\lambda_{s}\in{\mathbb{C}}. These numbers must satisfy the group relations, i.e.

λr4=λs2=λrλsλrλs=1.\lambda_{r}^{4}=\lambda_{s}^{2}=\lambda_{r}\lambda_{s}\lambda_{r}\lambda_{s}=1.

Since λs2=1\lambda_{s}^{2}=1, we then get that λrλsλrλs=1λr2=1\lambda_{r}\lambda_{s}\lambda_{r}\lambda_{s}=1\Rightarrow\lambda_{r}^{2}=1, hence λr,λs{±1}.\lambda_{r},\lambda_{s}\in\{\pm 1\}. Thus, for any (i,j)22(i,j)\in{\mathbb{Z}}_{2}\oplus{\mathbb{Z}}_{2}, (π(i,j),v)(\pi_{(i,j)},{\mathbb{C}}v) is a representation, where

π(i,j)(smrn)=(1)im(1)jn\pi_{(i,j)}(s^{m}r^{n})=(-1)^{im}(-1)^{jn}

is a representation. (This gives four isomporhism classes of one-dimensional representations of D4D_{4}.)