4 Problem Sheet 4:
Computations with Galois groups
Exercise 4.1 Let \(K\subset M\subset L\) be a tower of finite extensions.
\(\;(a)\) Given that \(L/K\) is a Galois extension, prove that \(L/M\) is as well.
\(\;(b)\) Give an example where \(L/K\) is Galois but \(M/K\) is not.
Solution
\((a)\) We need to show \(L/M\) is normal and separable:
As \(L/K\) is normal, then it is the splitting field of some polynomial \(f(x)\in K[x]\) over \(K\) and there are \(\theta_1,...,\theta_n\in L\) with \(f(x)=c(x-\theta_1,...,\theta_n)\) and \(L=K(\theta_1,...,\theta_n)\). Clearly, \(f(x)\in M[x]\), \(f(x)\) splits completely in \(L[x]\) and \(L=M(\theta_1,...,\theta_n)\). Hence \(L\) is the splitting field of \(f(x)\) over \(M\) and \(L/M\) is normal.
Any \(\beta\in M\) is also in \(L\), and as \(L/K\) is separable, the minimal polynomial of \(\beta\) over \(K\) has no repeated roots. Hence \(L/M\) is separable.
\((b)\) Consider the tower \(K=\mathbb{Q} \;\subset\; M=\mathbb{Q}(\sqrt[3]{2}) \;\subset\; L=\mathbb{Q}(\sqrt[3]{2},\omega)\) where \(\omega=e^{2\pi i/3}\).
Then \(L/K\) is normal as it is the splitting field of \(x^3-2\) over \(\mathbb{Q}\).
However, \(M/K\) is not normal, as it contains only one root of the irreducible polynomial \(x^3-2\in\mathbb{Q}[x]\).
Exercise 4.2 Which of the following simple extensions \(L/K\) are Galois? Give reasons.
\(\;(a)\;\) \(L=\mathbb{Q}(\sqrt[3]{2})\) over \(K=\mathbb{Q},\hspace{5em}\) \(\;(b)\;\) \(L=\mathbb{Q}(\sqrt[4]{2})\) over \(K=\mathbb{Q},\)
\(\;(c)\;\) \(L=\mathbb{Q}(\sqrt[8]{2})\) over \(K=\mathbb{Q}(\sqrt{2}),\hspace{2.85em}\) \(\;(d)\;\) \(L=K(\sqrt[8]{2})\) over \(K=\mathbb{Q}(i),\)
\(\;(e)\;\) \(L=\mathbb{F}_5(x)\) over \(K=\mathbb{F}_5(x^4),\hspace{3.45em}\) \(\;(f)\;\) \(L=\mathbb{F}_p(x)\) over \(K=\mathbb{F}_p(x^2)\) for \(p\) prime,
\(\;(g)\;\) \(L=\mathbb{C}(x)\) over \(K=\mathbb{C}(x^5),\hspace{4.05em}\) \(\;(h)\;\) \(L=\mathbb{F}_2(x)\) over \(K=\mathbb{F}_2(x^4).\)
Solution
\((a)\) This extension isn’t Galois as it isn’t normal.
- The minimal polynomial of \(\sqrt[3]{2}\) over \(K=\mathbb{Q}\) is \(x^3-2\in\mathbb{Q}[x]\). This has only one root in \(L=\mathbb{Q}(\sqrt[3]{2})\).
\((b)\) This extension isn’t Galois as it isn’t normal.
- The minimal polynomial of \(\sqrt[4]{2}\) over \(K=\mathbb{Q}\) is \(x^4-2\in\mathbb{Q}[x]\). This has only two roots \(\pm\sqrt[4]{2}\) in \(L=\mathbb{Q}(\sqrt[4]{2})\).
\((c)\) This extension isn’t Galois as it isn’t normal.
- The minimal polynomial of \(\sqrt[8]{2}\) over \(K=\mathbb{Q}(\sqrt{2})\) is \(x^4-\sqrt{2}\in K[x]\). This has only two roots \(\pm\sqrt[8]{2}\) in \(L=\mathbb{Q}(\sqrt[8]{2})\).
\((d)\) This extension is Galois.
- Note that \(\zeta=e^{\pi i/4}=(1+i)/\sqrt{2}\in L=\mathbb{Q}(i,\sqrt[8]{2})\). The minimal polynomial of \(\sqrt[8]{2}\) over \(K=\mathbb{Q}(i)\) is \(f(x)=x^8-2\in K[x]\). This has \(8\) distinct roots \(\zeta^kx\in L\) for \(0\leq k\leq 7\) and \(L\) is the splitting field of \(f(x)\) over \(K\).
\((e)\) This extension is Galois.
- The minimal polynomial of \(x\) over \(K=\mathbb{F}_5(x^4)\) is \(f(X)=X^4-x^4\in K[X]\). This has \(4\) distinct roots \(x, 2x, 3x, 4x\in L=\mathbb{F}_5(x)\) and \(L\) is the splitting field of \(f(X)\) over \(K\).
\((f)\) This extension is Galois when \(p\neq 2\) but not when \(p=2\).
The minimal polynomial of \(x\) over \(K=\mathbb{F}_p(x^2)\) is \(f(X)=X^2-x^2\in K[X]\). If \(p\neq 2\), this has \(2\) distinct roots \(\pm x\in L=\mathbb{F}_p(x)\) and \(L\) is the splitting field of \(f(X)\) over \(K\).
However, if \(p=2\), \(f(X)=X^2-x^2=(X-x)^2\) has repeated roots so the extension isn’t separable.
\((g)\) This extension is Galois.
- The minimal polynomial of \(x\) over \(K=\mathbb{C}(x^5)\) is \(f(X)=X^5-x^5\in \mathbb{C}[X]\). This has five roots \(e^{2j\pi i/5}x\in L\) for \(0\leq j\leq 4\) and \(L\) is the splitting field of \(f(X)\) over \(K\).
\((h)\) This extension is not Galois as it isn’t separable.
- The minimal polynomial of \(x\) over \(K=\mathbb{F}_2(x^4)\) is \(f(X)=X^4-x^4\in K[X]\). This has repeated roots since \(X^4-x^4=(X-x)^4\).
Exercise 4.3 \(\;(a)\) Find a minimal Galois extension \(L/\mathbb{Q}\) containing \(\mathbb{Q}(\sqrt[4]{5})\).
\(\;(b)\) Describe the structure of \(G=\Gal(L/\mathbb{Q})\).
\(\;(c)\) Find all the proper subgroups of \(G\). Which ones are normal subgroups?
\(\;(d)\) Find all intermediate fields \(\mathbb{Q}\subset M\subset L\) with \([M:\mathbb{Q}]=2\) or \(4\). Which are normal extensions of \(\mathbb{Q}\)?
Solution
This is a long question, but should be a good test that you’ve understood how to construct Galois groups and use the Fundamental Theorem.
\((a)\) As \(\mathbb{Q}\) has characteristic zero, any extension is automatically separable. Let \(\theta=\sqrt[4]{5}\). Then the minimal polynomial of \(\theta\) over \(\mathbb{Q}\) is \(f(x)=x^4-5\). Any normal extension of \(\mathbb{Q}\) containing \(\mathbb{Q}(\theta)\) must contain the four roots \(\pm\theta,\, \pm i\theta\) of \(f(x)\). The splitting field \(L\) of \(f(x)\) over \(\mathbb{Q}\) is by definition the minimal extension containing these roots and splitting fields are normal extensions. Clearly, \(\theta\) and \(i\) are in \(L\), and \(L=\mathbb{Q}(\sqrt[4]{5},i)\).
\((b)\) Since \(\mathbb{Q}(\theta)\subset\mathbb{R}\), we have \(i\not\in\mathbb{Q}(\theta)\) so \([L:\mathbb{Q}(\theta)]=2\).
Since \([L:\mathbb{Q}]=[L:\mathbb{Q}(\theta)] [\mathbb{Q}(\theta):\mathbb{Q}]=2\times 4=8\), the Galois group \(G=\Gal(L/\mathbb{Q})\) is a group of order \(8\). We need to determine its structure.
\(G\) contains the order \(2\) subgroup \(\Gal(L/\mathbb{Q}(\theta))\). This is generated by complex conjugation \(\tau\in G\) where \(\tau(i)=-i\) and \(\tau(\theta)=\theta\). \[\Gal(L/\mathbb{Q}(\theta))=\{\id,\tau\}=\langle\,\tau\,\rangle\cong\mathbb{Z}/2.\]
\(G\) contains the order \(4\) subgroup \(H=\Gal(L/\mathbb{Q}(i))\). This is generated by an automorphism \(\sigma\in G\) where \(\sigma(i)=i\) and \(\sigma(\theta)=i\theta\). \[H=\Gal(L/\mathbb{Q}(i))=\{\id,\sigma,\sigma^2,\sigma^3\}=\langle\,\sigma\,\rangle\cong\mathbb{Z}/4.\]
Now \(L^H=\mathbb{Q}(i)\) is Galois over \(\mathbb{Q}\) and as a result, \(H\) is a normal subgroup of \(G\). Since \(|G|/|H|=2\) and \(\tau\not\in H\), we see that \(G\) is the disjoint union of two cosets \(G=H\cup\tau H\) \[G=\{\id,\sigma,\sigma^2,\sigma^3,\tau,\tau\sigma, \tau\sigma^2,\tau\sigma^3\}.\] Notice these are distinct elements of \(G\) since no two have the same effects on both \(\theta\) and \(i\). We clearly have \(\tau^2=\sigma^4=\id\). There is also a relation \(\sigma\tau=\tau\sigma^3\), which we check by seeing how each side acts on \(\theta\) and \(i\): \[\begin{cases}\;\;\sigma\tau(\theta)=\sigma(\theta)=i\theta \\ \;\;\sigma\tau(i)=\sigma(-i)=-i\end{cases} \qquad\text{and}\qquad \begin{cases}\;\;\tau\sigma^3(\theta)=\tau(-i\theta)=i\theta \\ \;\;\tau\sigma^3(i)=\tau(i)=-i\end{cases}\] Note we can use this to find the product of any two elements in \(G\) (as another element in \(G\)). We could also write this relation as \(\tau^{-1}\sigma\tau=\sigma^{-1}\) and we recognise that \(G\) is isomorphic to the dihedral group \(D_4\). \[G=\langle\,\sigma,\tau\,\mid\,\sigma^4=\tau^2=\id,\;\tau^{-1}\sigma\tau=\sigma^{-1}\,\rangle\cong D_4. \]
Remark: We can visualise \(G\) as the symmetry group \(D_4\) of a square by plotting the four roots in the complex plane and seeing how they are moved by \(G\). Notice complex conjugation \(\tau\) is a reflection of the whole field \(L\subset\mathbb{C}\), However, the other automorphism \(\sigma\) does not rotate the whole field as, for instance, rational numbers on the real line are not moved by \(\sigma\). It is only rotating the 4 roots…
\((c)\) The proper subgroups of \(D_4\) have order \(2\) or \(4\):
There are five elements of \(G\) having order \(2\) and each generates a subgroup isomorphic to \(\mathbb{Z}/2\): \[\langle\,\sigma^2\,\rangle=\{\id,\sigma^2\},\quad \langle\,\tau\,\rangle=\{\id,\tau\},\] \[\langle\,\tau\sigma\,\rangle=\{\id,\tau\sigma\},\quad \langle\,\tau\sigma^2\,\rangle=\{\id,\tau\sigma^2\},\quad \langle\,\tau\sigma^3\,\rangle=\{\id,\tau\sigma^3\}\]
There are two elements of \(G\) having order \(4\), namely \(\sigma\) and \(\sigma^3=\sigma^{-1}\). These both generate the same subgroup isomorphic to \(\mathbb{Z}/4\): \[H=\langle\,\sigma\,\rangle=\{\id,\sigma,\sigma^2,\sigma^3\}.\]
Any other subgroup of order \(4\) must be isomorphic to \(\mathbb{Z}/2\times\mathbb{Z}/2\). Such a subgroup has no order \(4\) elements so cannot contain \(\sigma\) or \(\sigma^3\). However, it must contain \(\sigma^2\) since the product of any two elements of the coset \(\tau H\) gives an element in \(H\). Therefore, it is generated by \(\sigma^2\) and one of the order two elements in \(\tau H\). There are two possibilities: \[\langle\,\sigma^2,\tau\,\rangle=\{\id,\sigma^2,\tau,\tau\sigma^2\},\quad \langle\,\sigma^2,\tau\sigma\,\rangle=\{\id,\sigma^2,\tau\sigma,\tau\sigma^3\}.\]
We’ll now find which of these are normal subgroups of \(G\).
The order \(4\) subgroups are automatically normal as they have index \(2\) in \(G\).
Also, \(\tau\sigma^2=\sigma^2\tau\) so the the element \(\sigma^2\) commutes with everything. That means the left and right cosets of \(\langle\,\sigma^2\,\rangle\) are equal and this subgroup is normal in \(G\).
However, the remaining four subgroups \(\langle\,\tau\sigma^r\,\rangle\) for \(r\in\mathbb{Z}\) are not normal in \(G\). Indeed \[\sigma(\tau\sigma^r)\sigma^{-1}=\sigma\tau\sigma^{r-1}=\tau\sigma^3\sigma^{r-1}=\tau\sigma^{r+2}\not\in\langle\,\tau\sigma^r\,\rangle.\]
The full diagram of subgroups is as follows, with the normal ones being in boxes:
\((d)\) As \([L:\mathbb{Q}]=8\), the proper intermediate fields will have \([M:\mathbb{Q}]=2\) or \(4\). By the Galois correspondence, they will be the fixed fields of the proper subgroups of \(G\) we just described.
The order \(4\) subgroups \(\langle\sigma\rangle\), \(\langle\sigma^2,\tau\rangle\), \(\langle\sigma^2,\tau\sigma\rangle\) correspond to quadratic extensions of \(\mathbb{Q}\) in \(L\) so we just need to find a single degree \(2\) element that is fixed.
We clearly have \(L^{\langle\sigma\rangle}=\mathbb{Q}(i)\).
\(\sigma^2(\theta)=\sigma(i\theta)=-\theta\) so \(\sigma^2(\theta^2)=\theta^2\). Also \(\tau(\theta^2)=\theta^2\), so \(L^{\langle\sigma^2,\tau\rangle}=\mathbb{Q}(\theta^2)=\mathbb{Q}(\sqrt{5})\).
Similarly, \(\sigma^2(i\theta^2)=i\theta^2\) and \(\tau\sigma(i\theta^2)=i\theta^2\). Hence \(L^{\langle\sigma^2,\tau\sigma\rangle}=\mathbb{Q}(i\theta^2)=\mathbb{Q}(i\sqrt{5})\).
The order \(2\) subgroups correspond to degree \(4\) extensions of \(\mathbb{Q}\) in \(L\). Some of these are easy to find, \[L^{\langle\,\tau\,\rangle}=\mathbb{Q}(\theta),\qquad L^{\langle\,\tau\sigma^2\,\rangle}=\mathbb{Q}(i\theta),\qquad L^{\langle\,\sigma^2\,\rangle}=\mathbb{Q}(\theta^2,i)=\mathbb{Q}(\sqrt{5},i).\] For the remaining subgroups \(\langle\,\tau\sigma\,\rangle\) and \(\langle\,\tau\sigma^3\,\rangle\), it’s less obvious which elements of \(L\) are fixed. Consider how automorphisms in the subgroup act on a general element of \(L\): \[\alpha=a+b\theta+c\theta^2+d\theta^3+ei+fi\theta+gi\theta^2+hi\theta^3 \quad\text{where $a,b,...,h\in\mathbb{Q}$.}\] Applying \(\tau\sigma\) gives \[\tau\sigma(\alpha)=a-bi\theta-c\theta^2+di\theta^3-ei-f\theta+gi\theta^2+h\theta^3 \] so \(\tau\sigma(\alpha)=\alpha\) if and only if \(b=-f\), \(c=-c\), \(e=-e\), \(d=h\), i.e. \[\alpha=a+b(1-i)\theta+d(1+i)\theta^3+gi\theta^2.\] Picking something simple, e.g. \(a=d=g=0\) and \(b=1\) gives a degree \(4\) element \(\beta=(1-i)\theta\) fixed by \(\tau\sigma\). Actually, \(\beta^2=-2i\theta^2\) and \(\beta^3=-2(1+i)\theta^3\), so \[\tau\sigma(\alpha)=\alpha\quad\iff\quad \alpha=a+b\beta-(g/2)\beta^2-(d/2)\beta^3 \quad\text{for arbitrary $a,b,g,d\in\mathbb{Q}$.}\] Hence we have \(L^{\langle\,\tau\sigma\,\rangle}=\mathbb{Q}(\beta)=\mathbb{Q}((1-i)\theta)\). Similarly, \(\gamma=(1+i)\theta\) is fixed by \(\tau\sigma^3\) and we find \(L^{\langle\,\tau\sigma^3\,\rangle}=\mathbb{Q}((1+i)\theta)\). Here’s the full diagram of \(L\) and its subfields, with the normal extensions of \(\mathbb{Q}\) in boxes corresponding to the normal subgroups of \(G\):
Notice that \(\sigma\in G\) flips the non-normal extensions \[\mathbb{Q}(\sqrt[4]{5})\;\leftrightarrows\;\mathbb{Q}(i\sqrt[4]{5})\qquad\text{and}\qquad \mathbb{Q}((1-i)\sqrt[4]{5})\;\leftrightarrows\;\mathbb{Q}((1+i)\sqrt[4]{5}).\]
Exercise 4.4 Show that \(\sqrt{7}\not\in L=\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})\) by considering how automorphisms in the Galois group \(\Gal(L/\mathbb{Q})\) act on \(\sqrt{7}\).
Solution
We define three generators \(\sigma_1,\sigma_2,\sigma_3\in G=\Gal(L/\mathbb{Q})\) via their actions on \(\sqrt{2},\sqrt{3},\sqrt{5}\):
and then \(G=\langle\,\sigma_1,\sigma_2,\sigma_3\,\mid\,\sigma_1^2=\sigma_2^2=\sigma_3^3=\id,\;\sigma_i\sigma_j=\sigma_j\sigma_i\;\; \text{for $1\leq i,j\leq 3$}\,\rangle\cong \mathbb{Z}/2\times\mathbb{Z}/2\times\mathbb{Z}/2\).
Consider the chain of subgroups and corresponding fixed fields \[\{\id\}\;\;\subset\;\;H_1=\langle\,\sigma_1\,\rangle\;\;\subset\;\; H_2=\langle\,\sigma_1,\sigma_2\,\rangle\;\;\subset\;\; G \] \[ L=\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})\;\;\supset\;\; L^{H_1}=\mathbb{Q}(\sqrt{3},\sqrt{5}) \;\;\supset\;\; L^{H_2}=\mathbb{Q}(\sqrt{5})\;\;\supset\;\; L^G=\mathbb{Q}.\] Suppose that \(\sqrt{7}\in L\). Then we have \(\sigma(\sqrt{7})^2=\sigma(7)=7\;\;\Rightarrow\;\;\sigma(\sqrt{7})=\pm\sqrt{7}\) for each \(\sigma\in G\).
Push \(\sqrt{7}\in L\) down the tower to obtain two elements in \(L^{H_1}=\mathbb{Q}(\sqrt{3},\sqrt{5})\):
- Given \(\sqrt{7}\in L\), we have \[\sigma_1(\sqrt{7})=\sqrt{7}\;\Rightarrow\;\sqrt{7}\in L^{H_1}\;\;\;\text{and}\;\;\;\sigma_1(\sqrt{7})=-\sqrt{7}\;\Rightarrow\;\sqrt{14}=\sqrt{2}\sqrt{7}\in L^{H_1}.\]
Now push each option \(\sqrt{7},\sqrt{14}\in L^{H_1}\) down to \(L^{H_2}=\mathbb{Q}(\sqrt{5})\):
Given \(\sqrt{7}\in L^{H_1}=\mathbb{Q}(\sqrt{3},\sqrt{5})\), we have \(\sqrt{21}=\sqrt{3}\sqrt{7}\in L^{H_1}\). Then \[\sigma_2(\sqrt{7})=\sqrt{7} \;\Rightarrow\; \sqrt{7}\in L^{H_2}\;\;\;\text{and}\;\;\;\sigma_2(\sqrt{7})=-\sqrt{7} \;\Rightarrow\; \sqrt{21}\in L^{H_2}.\]
Given \(\sqrt{14}\in L^{H_1}=\mathbb{Q}(\sqrt{3},\sqrt{5})\), we have \(\sqrt{42}=\sqrt{3}\sqrt{14}\in L^{H_1}\). Then \[\sigma_2(\sqrt{7})=\sqrt{7} \;\Rightarrow\; \sqrt{14}=\sqrt{2}\sqrt{7}\in L^{H_2}\;\;\;\text{and}\;\;\;\sigma_2(\sqrt{7})=-\sqrt{7} \;\Rightarrow\; \sqrt{42}=\sqrt{2}\sqrt{3}\sqrt{7}\in L^{H_2}\]
Finally push each option \(\sqrt{7},\sqrt{21},\sqrt{14},\sqrt{42}\in L^{H_2}\) down to \(L^G=\mathbb{Q}\):
Given \(\sqrt{7}\in L^{H_2}\), we have \(\sqrt{35}=\sqrt{5}\sqrt{7}\in L^{H_2}\). Then \[\sigma_3(\sqrt{7})=\sqrt{7} \;\Rightarrow\; \sqrt{7}\in L^{G}\;\;\;\text{and}\;\;\;\sigma_3(\sqrt{7})=-\sqrt{7} \;\Rightarrow\; \sqrt{35}=\sqrt{5}\sqrt{7}\in L^{G}.\]
Given \(\sqrt{21}\in L^{H_2}\), we have \(\sqrt{105}=\sqrt{5}\sqrt{21}\in L^{H_2}\). Then \[\sigma_3(\sqrt{7})=\sqrt{7} \;\Rightarrow\; \sqrt{21}\in L^{G}\;\;\;\text{and}\;\;\;\sigma_3(\sqrt{7})=-\sqrt{7} \;\Rightarrow\; \sqrt{105}=\sqrt{3}\sqrt{5}\sqrt{7}\in L^{G}.\]
Given \(\sqrt{14}\in L^{H_2}\), we have \(\sqrt{70}=\sqrt{5}\sqrt{14}\in L^{H_2}\). Then \[\sigma_3(\sqrt{7})=\sqrt{7} \;\Rightarrow\; \sqrt{14}\in L^{G}\;\;\;\text{and}\;\;\;\sigma_3(\sqrt{7})=-\sqrt{7} \;\Rightarrow\; \sqrt{70}=\sqrt{2}\sqrt{5}\sqrt{7}\in L^{G}.\]
Given \(\sqrt{42}\in L^{H_2}\), we have \(\sqrt{210}=\sqrt{5}\sqrt{42}\in L^{H_2}\). Then \[\sigma_3(\sqrt{7})=\sqrt{7} \;\Rightarrow\; \sqrt{42}\in L^{G}\;\;\;\text{and}\;\;\;\sigma_3(\sqrt{7})=-\sqrt{7} \;\Rightarrow\; \sqrt{210}=\sqrt{2}\sqrt{3}\sqrt{5}\sqrt{7}\in L^{G}.\]
We find that one of \(\sqrt{7}, \sqrt{14},\sqrt{21},\sqrt{35},\sqrt{42},\sqrt{70},\sqrt{105},\sqrt{210}\) is a rational number. But this is false (e.g. by the rational root test) so the initial assumption \(\sqrt{7}\in L\) gives a contradiction.
Remark: The above top-down step-by-step approach is instructive. However, looking back at it we can considerably speed up the argument as follows. We balance the \(\pm\) signs to directly construct an irrational number fixed by all \(\sigma_1, \sigma_2,\sigma_3\).
Suppose \(\sqrt{7}\in L\). Then for each \(1\leq i\leq 3\), we have \[\sigma_i(\sqrt{7})^2=\sigma_i(7)=7\qquad\implies\qquad \sigma_i(\sqrt{7})=(-1)^{j_i}\sqrt{7}\quad\text{for some integers $0\leq j_i\leq 1$.}\]
Define an integer \(m=2^{j_1}3^{j_2}5^{j_3}\). Then we also have \[\sigma_i(\sqrt{m})=(-1)^{j_i}\sqrt{m}\qquad\implies\qquad \sigma_i(\sqrt{7m})=\sigma_i(\sqrt{7})\sigma_i(\sqrt{m})=\sqrt{7m}.\]
In particular, \(\sqrt{7m}\) is fixed by all elements of \(G\) and \(\sqrt{7m}\in L^G=\mathbb{Q}\).
But \(7m\) has exactly one prime factor of \(7\) so is not a square in \(\mathbb{Q}\). In other words, we have constructed an irrational number in \(\mathbb{Q}\), giving the contradiction!
Exercise 4.5 \(\;(a)\) Prove that \(L=\mathbb{Q}\left(\sqrt{-3},\sqrt[3]{2},\sqrt[3]{5}\right)\) is Galois over \(\mathbb{Q}\).
\(\;(b)\) Let \(K=\mathbb{Q}(\sqrt{-3})\). Show that \([L:K]=9\).
\(\;(c)\) Find the structure of the group \(H=\Gal\left(L/K\right)\).
\(\;(d)\) Find all intermediate fields \(K\subset M\subset L\) such that \([L:M]=3\).
\(\;(e)\) Find the structure of the group \(G=\Gal(L/\mathbb{Q})\).
Solution
\((a)\) Let \(\omega=e^{2\pi i/3}=(-1+\sqrt{-3})/2\). Then \(L=\mathbb{Q}(\sqrt{-3},\sqrt[3]{2},\sqrt[3]{5})=\mathbb{Q}(\omega,\sqrt[3]{2},\sqrt[3]{5})\) is the splitting field of \[(x^3-2)(x^3-5)=\left(x-\sqrt[3]{2}\right)\left(x-\omega\sqrt[3]{2}\right)\left(x-\omega^2\sqrt[3]{2}\right) \left(x-\sqrt[3]{5}\right)\left(x-\omega\sqrt[3]{5}\right)\left(x-\omega^2\sqrt[3]{5}\right)\] over \(\mathbb{Q}\). Indeed, this field extension contains and is generated by \(\sqrt[3]{2}, \sqrt[3]{5}\) and \(\omega=(\omega\sqrt[3]{2})/\sqrt[3]{2}\). Thus \(L/\mathbb{Q}\) is normal and, since the characteristic is zero, it is also separable and hence Galois.
\((b)\) We proceed similarly to the case of quadratic fields - things are only slightly more complicated. In the quadratic case, the square roots of unity \(\pm 1\) are automatically in the base field. Here we make use of the cube roots of unity \(1,\omega,\omega^2\) in \(K\).
The extension \(K(\sqrt[3]{2})/K\) is Galois (it’s the splitting field of \(x^3-2\) over \(K\) and has characteristic zero) and has degree at most \(3\). Also, there is a non-trivial automorphism \(\sigma\in\Gal(K(\sqrt[3]{2})/K)\) of order \(3\) defined by \(\sigma(\sqrt[3]{2})=\omega\sqrt[3]{2}\). Now \(\Gal(K(\sqrt[3]{2})/K)=\langle\,\sigma\,\rangle\cong\mathbb{Z}/3\) and \([(K(\sqrt[3]{2}):K]=3\).
Suppose that \(\sqrt[3]{5}\in K(\sqrt[3]{2})\). Then \[\sigma(\sqrt[3]{5})^3=\sigma(5)=5\quad\implies\quad \sigma(\sqrt[3]{5})=\sqrt[3]{5},\;\; \omega\sqrt[3]{5}\;\;\text{or}\;\;\omega^2\sqrt[3]{5}.\]
If \(\sigma(\sqrt[3]{5})=\sqrt[3]{5}\) then \(\sqrt[3]{5}\in K(\sqrt[3]{2})^{\langle\,\sigma\,\rangle}=K\) and so \(\mathbb{Q}(\sqrt[3]{5})\subset K\).
If \(\sigma(\sqrt[3]{5})=\omega\sqrt[3]{5}\) then \(\sigma(\sqrt[3]{5/2})=(\omega\sqrt[3]{5})/(\omega\sqrt[3]{2})=\sqrt[3]{5/2}\) and \(\mathbb{Q}(\sqrt[3]{5/2})=\mathbb{Q}(\sqrt[3]{20})\subset K\).
If \(\sigma(\sqrt[3]{5})=\omega^2\sqrt[3]{5}\) then \(\sigma(\sqrt[3]{5/4})=(\omega^2\sqrt[3]{5})/(\omega^2\sqrt[3]{4})=\sqrt[3]{5/4}\) and \(\mathbb{Q}(\sqrt[3]{5/4})=\mathbb{Q}(\sqrt[3]{10})\subset K\).
In each case, we find a degree \(3\) extension of \(\mathbb{Q}\) contained in a degree \(2\) extension \(K/\mathbb{Q}\) which is impossible. Hence \(x^3-5\) is irreducible over \(K(\sqrt[3]{2})\) and \[ [L:K]=[L:K(\sqrt[3]{2})]\cdot[K(\sqrt[3]{2}):K]=3\cdot 3=9.\]
\((c)\) Define automorphisms \(\sigma_1,\sigma_2\in H=\Gal(L/K)\) by their actions on \(\sqrt[3]{2}\) and \(\sqrt[3]{5}\) as follows (where we note they both act trivially on \(\omega\in K\)):
\(\sigma_1(\sqrt[3]{2})=\omega\sqrt[3]{2}\) and \(\sigma_1(\sqrt[3]{5})=\sqrt[3]{2}\). Then \(\sigma_1^3=\id\) and we have an order \(3\) subgroup \[H_1=\langle\,\sigma_1\,\rangle=\Gal(L/K(\sqrt[3]{5}))\subset H.\]
\(\sigma_2(\sqrt[3]{2})=\sqrt[3]{2}\) and \(\sigma_2(\sqrt[3]{5})=\omega\sqrt[3]{5}\). Then \(\sigma_2^3=\id\) and we have an order \(3\) subgroup \[H_2=\langle\,\sigma_2\,\rangle=\Gal(L/K(\sqrt[3]{2}))\subset H.\]
Note \(\sigma_2\not\in\langle\sigma_1\rangle\) so \(H_1\) and \(H_2\) are different subgroups of \(H\). Also, \(\sigma_1\sigma_2=\sigma_2\sigma_1\) and we obtain \(9\) distinct elements \(\sigma_1^j\sigma_2^k\in H\) for \(0\leq j,k\leq 2\). The Galois group is \[\begin{align*} H=\Gal(L/K)&=\{\sigma_1,\sigma_2\,\mid\, \sigma_1^3=\sigma_2^3=\id,\,\sigma_1\sigma_2=\sigma_2\sigma_1\} \\ &=\langle\,\sigma_1\,\rangle\times\langle\,\sigma_2\,\rangle\cong\mathbb{Z}/3\times\mathbb{Z}/3. \end{align*}\]
\((d)\) The intermediate fields with \([L:M]=3\) are the fixed fields of the order \(3\) subgroups of \(H\). As well as \(H_1\) and \(H_2\) above, there are two others: \[H_1=\langle\,\sigma_1\,\rangle, \quad H_2=\langle\,\sigma_2\,\rangle,\quad H_3=\langle\,\sigma_1\sigma_2\,\rangle,\quad H_4=\langle\,\sigma_1\sigma_2^2\,\rangle.\] Any order \(3\) element in \(H\) will generate exactly one of these four subgroups.
For the fixed fields, we already know \(M_1=L^{H_1}=K(\sqrt[3]{5})\) and \(M_2=L^{H_2}=K(\sqrt[3]{2})\). For the other two, compute fixed degree \(3\) elements over \(K\) as follows:
\(\sigma_1\sigma_2(\sqrt[3]{2})=\omega\sqrt[3]{2}\) and \(\sigma_1\sigma_2(\sqrt[3]{5})=\omega\sqrt[3]{5}\) so \(\sigma_1\sigma_2(\sqrt[3]{20})=(\omega\sqrt[3]{2})^2(\omega\sqrt[3]{5})=\sqrt[3]{20}\).
\(\sigma_1\sigma_2^2(\sqrt[3]{2})=\omega\sqrt[3]{2}\) and \(\sigma_1\sigma_2^2(\sqrt[3]{5})=\omega^2\sqrt[3]{5}\) so \(\sigma_1\sigma_2^2(\sqrt[3]{10})=(\omega\sqrt[3]{2})(\omega^2\sqrt[3]{5})=\sqrt[3]{10}\).
and so \(M_3=L^{H_3}=K(\sqrt[3]{20})\) and \(M_4=L^{H_4}=K(\sqrt[3]{10})\).
\((e)\) The group \(H=\Gal(L/K)\) is a normal subgroup of \(G=\Gal(L/\mathbb{Q})\) of index \(2\). Define \(\tau\in G\) by
- \(\tau(\omega)=\omega^2\) (equivalently, \(\tau(\sqrt{-3})=-\sqrt{3}\)) and \(\tau(\sqrt[3]{2})=\sqrt[3]{2}\), \(\tau(\sqrt[3]{5})=\sqrt[3]{5}\).
Then \(H\) and \(\tau H\) are disjoint cosets and we have \(G=H\cup\tau H\) containing the \(18\) distinct elements of the form \(\sigma_1^j\sigma_2^k\) and \(\tau\sigma_1^j\sigma_2^k\) where \(0\leq j,k\leq 2\). We note that \(G\) is not abelian - using \(\tau(\omega)=\omega^2\), one can check how \(\sigma_1\tau\), \(\sigma_2\tau\) act on the field generators: \[\sigma_1\tau(\omega)=\omega^2=\tau\sigma_1^2(\omega),\quad \sigma_1\tau(\sqrt[3]{5})=\sqrt[3]{5}=\tau\sigma_1^2(\sqrt[3]{5})\] \[\text{and}\quad \sigma_1\tau(\sqrt[3]{2})=\omega\sqrt[3]{2}=\tau(\omega^2\sqrt[3]{2})=\tau\sigma_1^2(\sqrt[3]{2})\] so \(\sigma_1\tau=\tau\sigma_1^2\) and similarly \(\sigma_2\tau=\tau\sigma_2^2\). The full structure of \(G=\Gal(L/\mathbb{Q})\) is given by \[G=\langle\,\sigma_1,\sigma_2,\tau\,\mid\, \sigma_1^3=\sigma_2^3=\tau^2=\id,\;\sigma_1\sigma_2=\sigma_2\sigma_1,\;\sigma_1\tau=\tau\sigma_1^2,\;\sigma_2\tau=\tau\sigma_2^2\,\rangle.\]
Remark: If you are interested, it turns out there are \(5\) types of groups of order \(18\).
\(G\) is not isomorphic to \(\mathbb{Z}/2\times\mathbb{Z}/3\times\mathbb{Z}/3\) or \(\mathbb{Z}/2\times\mathbb{Z}/9\) as it is not abelian.
\(G\) is not isomorphic to \(D_9\) since \(G\) doesn’t have any elements of order \(9\).
\(G\) is not isomorphic to \(D_3\times\mathbb{Z}/3\). This group has a non-trivial centre - elements in the subgroup \(\{id_{D_3}\}\times\mathbb{Z}/3\) commute with every element in the whole group. However, \(G\) has trivial centre - the identity is the only element that commutes with all elements of the group.
Rather, \(G\) is isomorphic to the fifth type: the generalised dihedral group of \(H=\mathbb{Z}/3\times\mathbb{Z}/3\). One has \(h\tau=\tau h^{-1}\) for every \(h\in H\).
Exercise 4.6 In each of the following cases, for the field \(K\) and polynomial \(f(x)\in K[x]\), find the splitting field \(L\) of \(f(x)\) over \(K\). Also find the Galois group \(G=\Gal(L/K)\) and all the proper subgroups \(H\subset G\).
\(\;(a)\;\;K=\mathbb{Q}\) and \(f(x)=(x^2-2)(x^2-5),\hspace{1em}\) \(\;(b)\;\;K=\mathbb{Q}\) and \(f(x)=(x^4+1)(x^2-5),\)
\(\;(c)\;\;K=\mathbb{Q}\) and \(f(x)=x^5-1,\hspace{5.2em}\) \(\;(d)\;\;K=\mathbb{Q}(i)\) and \(f(x)=x^8-2,\)
\(\;(e)(\star)\;\;K=\mathbb{Q}\) and \(f(x)=x^6-2,\hspace{3.9em}\) \(\;(f)\;\;K=\mathbb{Q}(\sqrt{-3})\) and \(f(x)=(x^3-2)(x^3-5),\)
\(\;(g)(\star)\;\;K=\mathbb{Q}\) and \(f(x)=x^4+x^2-1,\hspace{1.7em}\) \(\;(h)\;\;K=\mathbb{Q}(i)\) and \(f(x)=x^8+1.\)
Solution
\((a)\) The roots of \(f(x)=(x^2-2)(x^2-5)\) are \(\pm\sqrt{2},\pm\sqrt{5}\) and the splitting field is \(L=\mathbb{Q}(\sqrt{2},\sqrt{5})\).
Define \(\sigma,\tau\in G=\Gal(L/\mathbb{Q})\) by \(\sigma(\sqrt{2})=-\sqrt{2}\), \(\sigma(\sqrt{5})=\sqrt{5}\) and \(\tau(\sqrt{2})=\sqrt{2}\), \(\tau(\sqrt{5})=-\sqrt{5}\). Then \[G=\langle\,\sigma,\tau\,\mid\, \sigma^2=\tau^2=\id,\; \sigma\tau=\tau\sigma\,\rangle\cong\mathbb{Z}/2\times\mathbb{Z}/2.\] There are 3 proper subgroups, each isomorphic to \(\mathbb{Z}/2\): \[H_1=\langle\,\sigma\,\rangle,\qquad H_2=\langle\,\tau\,\rangle,\qquad H_3=\langle\,\sigma\tau\,\rangle.\]
\((b)\) The roots of \(f(x)=(x^4+1)(x^2-5)\) are \((\pm 1\pm i)/\sqrt{2}\) and \(\pm\sqrt{5}\). We quickly see \(i\) and \(\sqrt{2}\) are linear combinations of these and the splitting field is \(L=\mathbb{Q}(i,\sqrt{2},\sqrt{5})\).
Define \(\sigma_1,\sigma_2,\sigma_3\in G=\Gal(L/\mathbb{Q})\) by their actions on \(i,\sqrt{2},\sqrt{5}\):
\(\sigma_1(\sqrt{i})=-\sqrt{i},\quad\sigma_1(\sqrt{2})=\sqrt{2},\quad\sigma_1(\sqrt{5})=\sqrt{5}\)
\(\sigma_2(\sqrt{i})=\sqrt{i},\quad\sigma_2(\sqrt{2})=-\sqrt{2},\quad\sigma_2(\sqrt{5})=\sqrt{5}\)
\(\sigma_3(\sqrt{i})=\sqrt{i},\quad\sigma_3(\sqrt{2})=\sqrt{2},\quad\sigma_3(\sqrt{5})=-\sqrt{5}\)
Then check that \[G=\langle\,\sigma_1,\sigma_2,\sigma_3\,\mid\, \sigma_1^2=\sigma_2^2=\sigma_3^2=\id,\; \sigma_i\sigma_j=\sigma_j\sigma_i\;\text{for each $i,j$}\,\rangle\cong\mathbb{Z}/2\times\mathbb{Z}/2\times\mathbb{Z}/2.\] There are \(7\) elements of order \(2\), each giving a subgroup isomorphic to \(\mathbb{Z}/2\): \[\langle\,\sigma_1\,\rangle,\;\; \langle\,\sigma_2\,\rangle,\;\; \langle\,\sigma_3\,\rangle,\;\; \langle\,\sigma_1\sigma_2\,\rangle,\;\; \langle\,\sigma_1\sigma_3\,\rangle,\;\; \langle\,\sigma_2\sigma_3\,\rangle,\;\; \langle\,\sigma_1\sigma_2\sigma_3\,\rangle.\] There are \(7\) subgroups of order \(4\), each isomorphic to \(\mathbb{Z}/2\times\mathbb{Z}/2\). \[\langle\,\sigma_1,\sigma_2\,\rangle,\;\; \langle\,\sigma_1,\sigma_3\,\rangle,\;\; \langle\,\sigma_2,\sigma_3\,\rangle,\;\; \langle\,\sigma_1,\sigma_2\sigma_3\,\rangle,\;\; \langle\,\sigma_2,\sigma_1\sigma_3\,\rangle,\;\; \langle\,\sigma_3,\sigma_1\sigma_2\,\rangle,\;\; \langle\,\sigma_1\sigma_2,\sigma_2\sigma_3\,\rangle.\]
\((c)\) Let \(\zeta=e^{2\pi i/5}\), so that \[\begin{align*} f(x)=x^5-1&=(x-1)(x^4+x^3+x^2+x+1) \\ &=(x-1)(x-\zeta)(x-\zeta^2)(x-\zeta^3)(x-\zeta^4) \end{align*}\] and the splitting field is \(L=\mathbb{Q}(\zeta)\). Note we have \([L:\mathbb{Q}]=4\) as \(g(x)=x^4+x^3+x^2+x+1\) is irreducible over \(\mathbb{Q}\) (by using Eisenstein’s Criterion) and so \(g(x)\) is the minimal polynomial of \(\zeta\). Define
\(\sigma\in G=\Gal(L/\mathbb{Q})\) by \(\sigma(\zeta)=\zeta^2\). Then
\(\sigma^2(\zeta)=\sigma(\zeta^2)=\zeta^4\),
\(\sigma^3(\zeta)=\sigma(\zeta^4)=\zeta^8=\zeta^3\),
\(\sigma^4(\zeta)=\sigma(\zeta^3)=\zeta^6=\zeta\) so \(\sigma^4=\id\).
Thus we have \(4\) distinct automorphisms \(\id,\sigma,\sigma^2,\sigma^3\) and the Galois group is cyclic of order \(4\): \[G=\{\id,\sigma,\sigma^2,\sigma^3\}=\langle\,\sigma\,\rangle\cong\mathbb{Z}/4.\] There is only one proper subgroup \(\langle\,\sigma^2\,\rangle\cong\mathbb{Z}/2\) generated by the only order \(2\) element \(\sigma^2\).
\((d)\) Let \(\theta=\sqrt[8]{2}\) and \(\zeta=e^{\pi i/4}=(1+i)/\sqrt{2}\) so that the roots of \(x^8-2\) are \(\theta,\zeta\theta,\zeta^2\theta,...,\zeta^7\theta\).
Notice \(\theta\) and \(\zeta=(\zeta\theta)/\theta\) are in the splitting field. Furthermore, \(\zeta^2=i\) and \(i=\zeta\theta^4-1\), so the splitting field is \[L=\mathbb{Q}(\zeta,\theta)=\mathbb{Q}(i,\theta)=K(\theta).\] We have \([L:K]=8\) so need to find \(8\) distinct automorphisms in the Galois group.
Define \(\sigma\in\Gal(L/K)\) by \(\sigma(\theta)=\zeta\theta\) and \(\sigma(\zeta)=\zeta\). Notice this is a \(K\)-automorphism since \(\zeta^2=i\) and \(\sigma(i)=\sigma(\zeta^2)=\sigma(\zeta)^2=\zeta^2=i\).
Also, \(\sigma^j(\theta)=\zeta^j\theta\) for \(0\leq j\leq 7\) gives the \(8\) distinct roots of \(f(x)\). Hence \(\sigma\) has order \(8\) and the Galois group is cyclic or order \(8\): \[\Gal(L/K)=\{\id,\sigma,\sigma^2,...,\sigma^7\}=\langle\,\sigma\,\rangle\cong\mathbb{Z}/8.\] This has two proper subgroups generated by the elements of order \(2\) and \(4\): \[\langle\,\sigma^2\,\rangle=\langle\,\sigma^6\,\rangle\cong\mathbb{Z}/4\quad\text{and}\quad \langle\,\sigma^4\,\rangle\cong\mathbb{Z}/2.\]
\((e)\) Let \(\theta=\sqrt[6]{2}\) and \(\zeta=e^{\pi i/3}=(1+\sqrt{-3})/2\). The roots of \(f(x)=x^6-2\) are \(\theta,\zeta\theta,...,\zeta^5\theta\) and the splitting field is \[L=\mathbb{Q}(\theta,\zeta)=\mathbb{Q}(\theta,\sqrt{-3}).\] To check the degree of \(L/\mathbb{Q}\), notice \(\sqrt{-3}\) is not real so \(\sqrt{-3}\not\in\mathbb{Q}(\theta)\). Hence \[[L:\mathbb{Q}]=[L:\mathbb{Q}(\theta)] [\mathbb{Q}(\theta):\mathbb{Q}]=2\cdot6=12.\] Define \(\sigma,\tau\in G=\Gal(L/\mathbb{Q})\) by their actions on \(\theta\) and \(\sqrt{-3}\):
\(\sigma(\theta)=\zeta\theta\) and \(\sigma(\sqrt{-3})=\sqrt{-3}\) (or equivalently \(\sigma(\zeta)=\zeta\)),
\(\tau(\theta)=\theta\) and \(\tau(\sqrt{3})=-\sqrt{3}\) (or equivalently \(\tau(\zeta)=\zeta^{-1}=(1-\sqrt{-3})/2\)).
Then \(\sigma\) has order \(6\) so we have a subgroup \(H=\langle\,\sigma\,\rangle\subset G\) of order \(6\). as well as a subgroup \(\langle\,\tau\,\rangle\in G\) of order \(2\). Note that \(\tau\not\in H\) since \(\tau\) fixes \(\theta\), so the cosets \(H\) and \(\tau H\) are disjoint. We have \(12\) distinct automorphisms \(\sigma^j, \tau\sigma^j\) for \(0\leq j\leq 5\).
Furthermore, there is a relation \(\sigma\tau=\tau\sigma^{-1}\) since \[\sigma\tau(\theta)=\sigma(\theta)=\zeta\theta=\tau(\zeta^{-1}\theta)=\tau\sigma^{-1}(\theta),\] \[\sigma\tau(\zeta)=\sigma(\zeta^{-1})=\zeta^{-1}=\tau(\zeta)=\tau\sigma^{-1}(\zeta).\] Hence \(G\) is isomorphic to the dihedral group \(D_6\) of order \(12\), i.e. the symmetry group of a regular hexagon. \[G=\langle\,\sigma,\tau\,\mid\,\sigma^6=\tau^2=\id,\;\tau^{-1}\sigma\tau=\sigma^{-1}\,\rangle\cong D_6. \]
The are seven subgroups isomorphic to \(\mathbb{Z}/2\). They are generated by the seven order \(2\) elements: \[\langle\,\sigma^3\rangle\quad\text{and}\quad \langle\,\tau\sigma^j\,\rangle\quad\text{for $0\leq j\leq 5$}.\]
There is one subgroup of isomorphic to \(\mathbb{Z}/3\). It is generated by the only element of order \(3\): \[\langle\,\sigma^2\,\rangle\]
There are three subgroups of order \(4\) isomorphic to \(\mathbb{Z}/2\times\mathbb{Z}/2\). There are no elements of order \(4\), so we need two order \(2\) elements. These cannot both be from the coset \(\tau H\) so must include \(\sigma^3\) and we get \[\langle\,\sigma^3,\tau\rangle=\{\id,\sigma^3,\tau,\tau\sigma^3\},\quad \langle\,\sigma^3,\tau\sigma\rangle=\{\id,\sigma^3,\tau\sigma,\tau\sigma^4\},\quad \langle\,\sigma^3,\tau\sigma^2\rangle=\{\id,\sigma^3,\tau\sigma^2,\tau\sigma^5\}.\]
There are three subgroups of order \(6\). They each must include the only order \(3\) element \(\sigma^2\). There is the abelian subgroup \(H=\langle\,\sigma\,\rangle\cong\mathbb{Z}/6\). We also have \[\langle\,\sigma^2,\tau\rangle=\{\id,\sigma^2,\sigma^4,\tau,\tau\sigma^2,\tau\sigma^4\}\;\;\;\text{and}\;\;\; \langle\,\sigma^2,\tau\sigma\rangle=\{\id,\sigma^2,\sigma^4,\tau\sigma,\tau\sigma^3,\tau\sigma^5\}\] which are both isomorphic to \(S_3\cong D_3\). (Notice they are not abelian.)
Just for fun, here’s the diagram of subgroups, with the normal ones in boxes. See if you can find some of the corresponding fixed fields…
\((f)\) Let \(\omega=e^{2\pi i/3}=(-1+\sqrt{-3})/2\in K\), then the roots of \(f(x)=(x^3-2)(x^3-5)\) are \(\sqrt[3]{2},\omega\sqrt[3]{2},\omega^2\sqrt[3]{2}\) and \(\sqrt[3]{5},\omega\sqrt[3]{5},\omega^2\sqrt[3]{5}\). The splitting field is \[L=\mathbb{Q}(\omega,\sqrt[3]{2},\sqrt[3]{5})=K(\sqrt[3]{2},\sqrt[3]{5}).\] Note we have \([L:K]=9\), by showing \(\sqrt[3]{5}\not\in\mathbb{Q}(\sqrt[3]{2})\) as in the lecture notes.
Define \(\sigma,\tau\in G=\Gal(L/K)\) by \(\sigma(\sqrt[3]{2})=\omega\sqrt{2}\), \(\sigma(\sqrt[3]{5})=\sqrt[3]{5}\) and \(\tau(\sqrt[3]{2})=\sqrt[3]{2}\), \(\tau(\sqrt[3]{5})=\omega\sqrt[3]{5}\). Then \[G=\langle\,\sigma,\tau\,\mid\, \sigma^3=\tau^3=\id,\; \sigma\tau=\tau\sigma\,\rangle\cong\mathbb{Z}/3\times\mathbb{Z}/3.\]
- There are four subgroups of order \(3\): \[\langle\,\sigma\,\rangle=\{\id,\sigma,\sigma^2\},\quad \langle\,\tau\rangle=\{\id,\tau,\tau^2\},\quad \langle\,\sigma\tau\rangle=\{\id,\sigma\tau,\sigma^2\tau^2\},\quad \langle\,\sigma\tau^2\rangle=\{\id,\sigma\tau^2,\sigma^2\tau\}.\]
\((g)\) We found this splitting field in Exercise 3.1(d), but let’s repeat some of the work:
We have \(f(x)=x^4+x^2-1=(x^2-\alpha)(x^2-\beta)\) where \(\begin{cases} \alpha=(-1+\sqrt{5})/2, \\ \beta=(-1-\sqrt{5})/2.\end{cases}\).
Notice that \(\alpha\beta=-1\) so if we let \[\theta=\sqrt{\alpha}=\sqrt{(-1+\sqrt{5})/2}\] then the four roots are \(\pm\theta\) and \(\pm i/\theta\). In particular, the splitting field is \(L=\mathbb{Q}(\theta,i)\). We saw in Exercise 3.1(d) that \(f(x)\) is irreducible over \(\mathbb{Q}\). (Another way to see this is to notice it is irreducible modulo \(3\).) This means \([\mathbb{Q}(\theta):\mathbb{Q}]=4\) and since \(\theta\) is real, \(i\not\in\mathbb{Q}(\theta)\) and \([L:\mathbb{Q}(\theta)]=2\). Hence \([L:\mathbb{Q}]=8\) and the Galois group \(G=\Gal(L/\mathbb{Q})\) has order \(8\). We have the following familiar diagram
Any \(\varphi\in\Gal(L/K)\) is determined by \(\varphi(i)\) and \(\varphi(\theta)\). Furthermore, there are two choices for \(\varphi(i)=\pm i\) and four choices for \(\varphi(\theta)=\pm\theta, \pm i/\theta\). As \(G=\Gal(L/\mathbb{Q})\) has order \([L:\mathbb{Q}]=8\), all these choices must arise from some \(\varphi\):
Column 5 is complex conjugation on \(L=\mathbb{Q}(i,\theta)\).The only way to get an order \(4\) element of \(G\) is to choose one of the last two columns (none of the choices with \(\varphi(i)=+i\) or \(\varphi(\theta)=\pm\theta\) work). So define \(\tau\) and \(\sigma\in G\) by
\(\tau(i)=-i\) and \(\tau(\theta)=\theta\). This is order \(2\) so gives \(\langle\,\tau\,\rangle\cong\mathbb{Z}/2\).
\(\sigma(i)=-i\) and \(\sigma(\theta)=i/\theta\). Notice \(\sigma^2(\theta)=\sigma(i/\theta)=-i/(i/\theta)=-\theta\) and \(\sigma^4(\theta)=\theta\) so we do indeed have \(\langle\,\sigma\,\rangle\cong\mathbb{Z}/4\).
Also, check that \(\sigma\tau=\tau\sigma^3\) and so \(G\) is isomorphic to the dihedral group \(D_4\): \[G=\langle\,\sigma,\tau\,\mid\,\sigma^4=\tau^2=\id,\;\tau^{-1}\sigma\tau=\sigma^{-1}\,\rangle\cong D_4. \]
The subgroups are exactly as in Exercise 4.3:
Remark: The question doesn’t ask for this, but it’s a useful exercise to try to find the corresponding fixed fields. This is similar to Exercise 4.3 - one has to find subextensions of the correct degree that are fixed by each subgroup. There are some subtle differences, however. For instance, for the subgroup \(\langle\,\tau\sigma\,\rangle\), we find \(\tau\sigma(\theta-i/\theta)=\tau\sigma(\theta)-\tau\sigma(i/\theta)=\tau(i/\theta)-\tau(-\theta)=-i/\theta+\theta\).
Furthermore,
\[\left(\theta-\frac{i}{\theta}\right)^2=\theta^2-2i-\frac{1}{\theta^2}=\frac{-1+\sqrt{5}}{2}-2i+\frac{-1-\sqrt{5}}{2}=-1-2i\]
and \(\theta-i/\theta=\sqrt{-1-2i}\) which is of degree \(4\) over \(\mathbb{Q}\). Thus \(L^{\langle\,\tau\sigma\,\rangle}=\mathbb{Q}(\sqrt{-1-2i})\).
The full diagram of subfields is as follows, with the normal extensions of \(\mathbb{Q}\) in boxes:
\((h)\) Let \(\zeta=e^{\pi i/8}\) so \(\zeta^8=-1\). Then the roots of \(f(x)=x^8+1\) are \(\pm\zeta, \pm\zeta^3, \pm\zeta^5,\pm\zeta^7\), i.e. the primitive \(16th\) roots of unity. Hence the splitting field is \(L=\mathbb{Q}(\zeta)=K(\zeta)\).
The minimal polynomial of \(\zeta\) over \(K=\mathbb{Q}(i)\) is \[x^4-i=(x-\zeta)(x+\zeta)(x-i\zeta)(x+i\zeta)\] so \([L:K]=4\). Define \(\sigma\in\Gal(L/K)\) by
\(\sigma(\zeta)=i\zeta=\zeta^5\). Note that \(\sigma(i)=\sigma(\zeta^4)=(i\zeta)^4=i\) so this is a \(K\)-automorphism.
Then \(\sigma^2(\zeta)=-\zeta\), \(\sigma^3(\zeta)=-i\zeta\) and \(\sigma^4=\id\). In other words, \[\Gal(L/K)=\{\id,\sigma,\sigma^2,\sigma^3\}=\langle\,\sigma\,\rangle\cong\mathbb{Z}/4.\]
The only proper subgroup is \(\{\id,\sigma^2\}=\langle\,\sigma^2\,\rangle\cong\mathbb{Z}/2\).
Exercise 4.7 Let \(K\) be a field with \(\ch(K)\neq 2\).
\(\;(a)\) Given \(a,b\in K\), show that \([K(\sqrt{a},\sqrt{b}):K]=4\) if and only if \(a,b,ab\not\in{K^\times}^2\).
\(\;(b)\) We say a set \(\{a_1,...,a_n\}\subset K^\times\) is independent modulo squares when \[m_i\in\mathbb{Z}\;\;\text{and}\;\; a_1^{m_1}a_2^{m_2}\cdots a_n^{m_n}\in {K^\times}^2\;\;\implies\;\;\text{all $m_i$ are even}.\] \(\;\;\;\;\,\) Let \(L=K(\sqrt{a_1},\sqrt{a_2},...,\sqrt{a_n})\) for some \(a_i\in K\). Prove by induction that \([L:K]=2^n\) if and only if \(\{a_1,...,a_n\}\) is independent modulo squares.
\(\;(c)\) In that case, show that \(L/K\) is Galois with \(\Gal(L/K)=\underbrace{\mathbb{Z}/2\times\cdots\times\mathbb{Z}/2}_\text{$n$ times}\).
Solution
\((a)\) For the “if” part, use a contrapositive proof:
if \(a\in {K^\times}^2\), then \(K(\sqrt{a},\sqrt{b})=K(\sqrt{b})\).
if \(b\in {K^\times}^2\), then \(K(\sqrt{a},\sqrt{b})=K(\sqrt{a})\).
if \(ab\in {K^\times}^2\), then \(\sqrt{b}=c/\sqrt{a}\) for some \(c\in K\) so \(K(\sqrt{a},\sqrt{b})=K(\sqrt{a})\).
In each case, we have \([K(\sqrt{a},\sqrt{b}):K]\leq 2<4\).
For the “only if” part, suppose that \(a,b,ab\not\in {K^\times}^2\). Then \(\sqrt{a}\not\in K\) implies \([K(\sqrt{a}):K]=2\). Now \(K(\sqrt{a})/K\) is a quadratic Galois extension where \(\Gal(K(\sqrt{a})/K)=\langle\,\sigma\,\rangle\) and \(\sigma(\sqrt{a})=-\sqrt{a}\). Furthermore, if \(\sqrt{b}\in K(\sqrt{a})\) then \(\sigma(\sqrt{b})=\pm\sqrt{b}\) but
\(\sigma(\sqrt{b})=\sqrt{b}\;\;\Rightarrow\;\;\sqrt{b}\in K(\sqrt{a})^{\langle\,\sigma\rangle}=K\).
\(\sigma(\sqrt{b})=-\sqrt{b}\;\;\Rightarrow\;\;\sqrt{ab}\in K(\sqrt{a})^{\langle\,\sigma\rangle}=K\).
These both contradict the assumptions and we must have \(\sqrt{b}\not\in K(\sqrt{a})\). In particular, \([K(\sqrt{a},\sqrt{b}):K(\sqrt{a})]=2\) and the Tower Law shows \([K(\sqrt{a},\sqrt{b}):K]=4\).
\((b)\) We show the “if” part by a contrapositive proof again. Suppose that \(\{a_1,...,a_n\}\subset K^\times\) are not independent modulo squares. Then there exists \(m_1,...m_n\in\mathbb{Z}\) not all even with \[a_1^{m_1}\cdots a_n^{m_n}=b^2\quad\text{for some $b\in K^\times$.}\] Without loss of generality, we can assume \(m_n\) is odd, say \(m_n=2k-1\) for \(k\in\mathbb{Z}\). Then \[b\sqrt{a_n}=(\sqrt{a_1})^{m_1}\cdots (\sqrt{a_{n-1}})^{m_{n-1}} a_n^k\in K(\sqrt{a_1},...,\sqrt{a_{n-1}})\] and so \(L=K(\sqrt{a_1},...,\sqrt{a_{n-1}})\). But then \([L:K]\leq 2^{n-1}\) and so \([L:K]\neq 2^n\).
To prove the “only if” part, we proceed by induction on \(n\) using an argument as in part \((a)\).
Suppose \(\{a_1,...,a_n\}\subset K^\times\) is independent modulo squares. In fact, we will answer part (c) at the same time by showing \(L_n=K(\sqrt{a_1},...,\sqrt{a_n})\) is a Galois extension of \(K\) with \[\Gal(L_n/K)=\langle\sigma_1\rangle\times\cdots\times\langle\sigma_n\rangle\cong \underbrace{\mathbb{Z}/2\times\cdots\times\mathbb{Z}/2}_\text{$n$ times}\] where \(\sigma_i(\sqrt{a_i})=-\sqrt{a_i}\) and \(\sigma_i(\sqrt{a_j})=\sqrt{a_j}\) for \(j\neq i\). Notice that this will imply that \([L_n:K]=2^n\) as required. Assume the claim is true for \(L_{n-1}=K(\sqrt{a_1},...,\sqrt{a_{n-1}})\) and suppose that \(\sqrt{a_n}\in L_{n-1}\).
Then \(\sigma_i(\sqrt{a_n})=(-1)^{m_i}\sqrt{a_n}\) for some \(m_i\in\{0,1\}\) for each \(1\leq i\leq n-1\).
Consider the element \(\alpha=\sqrt{a_1^{m_1}\cdots a_{n-1}^{m_{n-1}}a_n}\in L_{n-1}\). For each \(i\), we have \[\sigma_i(\alpha)=\sigma_i(\sqrt{a_1})^{m_1}\cdots\sigma_i(\sqrt{a_{n-1}})^{m_{n-1}}\sigma_i(\sqrt{a_n})=\alpha.\] In particular, \(\alpha\) is fixed by each generator \(\sigma_i\in\Gal(L_{n-1}/K)\) so is in the fixed field \(K\).
But this means \(\alpha^2=a_1^{m_1}\cdots a_{n-1}^{m_{n-1}}a_n\in {K^\times}^2\) which contradicts \(\{a_1,...,a_n\}\subset K^\times\) being independent modulo squares since the power of \(a_n\) is odd.
Thus \(\sqrt{a_n}\not\in L_{n-1}\) and \(L_n=L_{n-1}(\sqrt{a_n})\) is a non-trivial quadratic extension with \[\Gal(L_n/L_{n-1})=\langle\sigma_n\rangle\quad\text{where $\;\;\sigma_n(\sqrt{a_n})=-\sqrt{a_n}$.}\] Finally, lifting each of the other \(\sigma_i\in\Gal(L_{n-1}/K)\) to \(L_n/K\) by letting them act trivially on \(\sqrt{a_n}\) gives the result.
Exercise 4.8 Show that the following extensions \(L/K\) are Galois. Furthermore, find the Galois group \(G=\Gal(L/K)\), the subgroups \(H\subset G\) and the corresponding fixed fields \(L^H\).
\(\;(a)\;\) \(L=\mathbb{R}(x)\) over \(K=\mathbb{R}(x^2+x^{-2}),\)
\(\;(b)\;\) \(L=\mathbb{R}(x,y)\) over \(K=\mathbb{R}(x^2,y^2),\)
\(\;(c)\;\) \(L=\mathbb{R}(x,y)\) over \(K=\mathbb{R}(x^2+y^2,xy).\)
Solution
\((a)\) Let \(t=x^2+x^{-2}\) so \(K=\mathbb{R}(t)\) and \(L=K(x)\). Then \(x\in L\) is a root of \(f(X)=X^4-tX^2+1\in K[X]\) and, in particular, \([L:K]\leq 4\).
Now, we have shown previously (using Gauss’s Lemma) that \(f(X)\) is irreducible in \(K[X]\), hence is the minimal polynomial of \(x\) over \(K\) and \([L:K]=4\). However, we now have a more elegant way to see this. Notice that \(-x\) is also a root of \(f(X)\). Furthermore, so are \(\pm x^{-1}\) and so \[f(X)=X^4-tX^2+1=(X-x)(X+x)(X-x^{-1})(X+x^{-1}).\] This means \(L=K(x)\) is the splitting field of \(f(X)\) over \(K\) and so \(L/K\) is normal. It is also separable as the characteristic is zero and hence \(L/K\) is Galois. We can now define \(4\) distinct elements in \(G=\Gal(L/K)\) by sending \(x\) to the \(4\) roots of \(f(X)\):
- \(\id(x)=x\), \(\;\sigma(x)=-x\), \(\;\tau(x)=x^{-1}\;\) and so \(\;\sigma\tau(x)=-x^{-1}\).
Thus we’ve found \([L:K]=|G|\geq 4\) and hence must equal \(4\). This implies \(f(X)\) is the minimal polynomial of \(x\) over \(K\) and \([L:K]=4\).
Clearly, \(\sigma^2=\tau^2=\id\) and \(\sigma\tau=\tau\sigma\) and we now have the structure of the Galois group \[G=\{\id,\sigma,\tau,\sigma\tau\}=\langle\,\sigma,\tau\,\rangle\cong\mathbb{Z}/2\times\mathbb{Z}/2.\] The proper subgroups of \(G\) are \(\langle\,\sigma\,\rangle\), \(\langle\,\tau\,\rangle\), \(\langle\,\sigma\tau\,\rangle\) which are each isomorphic to \(\mathbb{Z}/2\). For the fixed fields, notice
\(\sigma(x^2)=\sigma(x)^2=(-x)^2=x^2\),
\(\tau(x+x^{-1})=\tau(x)+\tau(x)^{-1}=x^{-1}+x\),
\(\sigma\tau(x-x^{-1})=\sigma(x^{-1}-x)=x-x^{-1}\).
The subgroups and corresponding fixed fields are:
\((b)\) Let \(s=x^2\) and \(t=y^2\) so \(K=\mathbb{R}(s,t)\) and \(L=K(\sqrt{s},\sqrt{t})\). Then \(\pm x,\pm y\) are roots of the polynomial \(f(X)=(X^2-s)(X^2-t)\in K[X]\) and \(L\) is the splitting field of \(f(X)\) over \(K\). We hence have \(L/K\) Galois and \([L:K]\leq 4\).
As in part \((a)\), we construct \(4\) distinct elements in \(G=\Gal(L/K)\) by mapping \(x\) and \(y\) to roots of \(f(X)\):
Define \(\sigma,\tau\in\Gal(L/K)\) by \(\sigma(x)=-x\), \(\sigma(y)=y\) and \(\tau(x)=x\), \(\tau(y)=-y\).
Note that \(\sigma\) and \(\tau\) fix \(x^2\) and \(y^2\) so these are \(K\)-automorphisms.
We also note that \(\sigma\tau(x)=-x\) and \(\sigma\tau(y)=-y\) so \(\sigma\tau(xy)=xy\).
Now \(\sigma^2=\tau^2=\id\) and \(\sigma\tau=\tau\sigma\) so once again, the Galois group is \[G=\{\id,\sigma,\tau,\sigma\tau\}=\langle\,\sigma,\tau\,\rangle\cong\mathbb{Z}/2\times\mathbb{Z}/2.\] The subgroups and corresponding fixed fields are as follows:
\((c)\) Let \(s=x^2+y^2\) and \(t=xy\) so \(K=\mathbb{R}(s,t)\) and \(L=K(x,y)\). Notice that \(y=t/x\) so actually, \(L=K(x)\). Now \(x\) is a root of \(f(x)=X^4-sX^2+t^2\in K[X]\) so \([L:K]\leq 4\). Indeed, \[f(X)=(X^2-x^2)(X^2-y^2)=X^4-(x^2+y^2)X^2+x^2y^2=X^4-sX^2+t^2\] and so the four roots are actually \(\pm x,\pm y\) and \(L\) is the splitting field of \(f(X)\) over \(K\).
Thus \(L/K\) is Galois and we’ll construct \(4\) distinct elements in \(\Gal(L/K)\) by mapping \(x\) and \(y\) to roots \(\pm x, \pm y\) of \(f(X)\). Note that \(t=xy\in K\) so these need to fix \(xy\) and we can’t take e.g. the choice \(\varphi(x)=-x\), \(\varphi(y)=y\). Instead,
define \(\sigma,\tau\in\Gal(L/K)\) by \(\sigma(x)=-x\), \(\sigma(y)=-y\) and \(\tau(x)=y\), \(\tau(y)=x\).
Note that \(\sigma\) and \(\tau\) fix \(x^2+y^2\) and \(xy\) so these are \(K\)-automorphisms. There is also the composition \(\sigma\tau\in G\) satisfying \(\sigma\tau(x)=-y\) and \(\sigma\tau(y)=-x\).
We have \(\sigma^2=\tau^2=\id\) and \(\sigma\tau=\tau\sigma\) so yet again, we find \[G=\{\id,\sigma,\tau,\sigma\tau\}=\langle\,\sigma,\tau\,\rangle\cong\mathbb{Z}/2\times\mathbb{Z}/2.\] Now find the fixed fields of the order \(2\) subgroups \(\langle\,\sigma\,\rangle\), \(\langle\,\tau\,\rangle\), \(\langle\,\sigma\tau\,\rangle\):
We have \(\sigma(x^2)=x^2\) and \(L^{\langle\,\sigma\,\rangle}=\mathbb{R}(x^2,xy)\).
We have \(\tau(x+y)=x+y\) and \(L^{\langle\,\tau\,\rangle}=\mathbb{R}(x+y,xy)\). (This is the subfield of symmetric functions in \(L\).)
We have \(\sigma\tau(x-y)=x-y\) and \(L^{\langle\,\sigma\tau\,\rangle}=\mathbb{R}(x-y,xy)\).
Note these are quadratic extensions of \(K=\mathbb{R}(x^2+y^2,xy)\) since \[x^2=\sqrt{(x^2+y^2)^2-2(xy)^2}\quad\text{and}\quad x\pm y=\sqrt{(x^2+y^2)\pm2(xy)}.\]
Exercise 4.9 Let \(G\) be the group of automorphisms of the field \(L=\mathbb{F}_3(x)\) given by \[\sigma_{a,b}:x\mapsto ax+b\quad\text{where $a,b\in\mathbb{F}_3$ and $a\neq 0$.}\] Find all subgroups of \(G\) and subfields \(M\) with \(L^G\subset M\subset L\).
Solution
There are \(2\) choices for \(a\), \(3\) choices for \(b\) so \(|G|=6\). In particular, \(G\) must be isomorphic to either \(\mathbb{Z}/2\times\mathbb{Z}/3\) or \(S_3\cong D_3\).
Let \(\sigma=\sigma_{1,1}\), i.e. \(\sigma(x)=x+1\). This has order \(3\) so \(G\) has a subgroup \[\langle\,\sigma\,\rangle=\{\id,\sigma,\sigma^2\}\cong\mathbb{Z}/3.\]
Let \(\tau=\sigma_{2,0}\), i.e. \(\tau(x)=2x=-x\). This has order \(2\) so \(G\) has a subgroup \[\langle\,\tau\,\rangle=\{\id,\tau\}\cong\mathbb{Z}/2.\]
Notice that \(\sigma\tau(x)=\sigma(2x)=2\sigma(x)=2x+2\) and \(\tau\sigma^2(x)=\tau(x+2)=2x+2\). Thus we have \[G=\langle\,\sigma, \tau\,\mid\, \sigma^3=\tau^2=\id,\; \tau\sigma\tau=\sigma^{-1}\,\rangle\cong S_3.\]
For the three order \(2\) subgroups \(\langle\,\tau\,\rangle\), \(\langle\,\tau\sigma\,\rangle\), \(\langle\,\tau\sigma^2\,\rangle\), the fixed fields will be generated by a quadratic polynomial in \(x\) so just see what happens:
\(\tau(x^2)=(-x)^2=x^2\).
\(\tau\sigma(x)=\tau(x+1)=2x+1\) and \(\tau\sigma(x^2)=(2x+1)^2=x^2+x+1\) so \(\tau\sigma(x^2-x)=x^2-x\).
\(\tau\sigma^2(x)=\tau(x+2)=2x+2\) and \(\tau\sigma^2(x^2)=(2x+2)^2=x^2+2x+1\) so \(\tau\sigma(x^2+x)=x^2+x\).
Thus we have found fixed fields \[L^{\langle\,\tau\,\rangle}=\mathbb{F}_3(x^2),\qquad L^{\langle\,\tau\sigma\,\rangle}=\mathbb{F}_3(x^2-x),\qquad L^{\langle\,\tau\sigma^2\,\rangle}=\mathbb{F}_3(x^2+x).\]
There is one order \(3\) subgroup \(\langle\,\sigma\,\rangle\). Now \(\sigma(x^3)=(x+1)^3=x^3+1\) so \(\sigma(x^3-x)=x^3-x\) and \[L^{\langle\,\sigma\,\rangle}=\mathbb{F}_3(x^3-x).\] Finally, we need to find \(L^G\). Notice how \(\tau\) operates on \(x^3-x\): we have \(\tau(x^3-x)=-(x^3-x)\) so \(\tau((x^3-x)^2)=(x^3-x)^2\) and \[L^G=\mathbb{F}_3((x^3-x)^2)=\mathbb{F}_3(x^6+x^4+x^2).\]