2 Problem Sheet 2:
Field extensions and minimal polynomials
Exercise 2.1 By considering degrees of field extensions, determine which of the following numbers are algebraic (over \(\mathbb{Q}\)).
\(\;(a)\;\;1+\sqrt{3}+\sqrt{5},\hspace{2em}\) \(\;(b)\;\;\sqrt{2}+\sqrt[4]{2},\hspace{2em}\) \(\;(c)\;\;\sqrt{2}+\sqrt[3]{3},\)
\(\;(d)\;\;\sqrt{\pi}-1,\hspace{4.4em}\) \(\;(e)\;\;\sqrt{\pi}+\sqrt{7},\hspace{1.9em}\) \(\;(f)\;\;\sqrt[5]{1+\sqrt{e}}.\)
Solution
One way to test if a number is algebraic (or transcendental) is to find a polynomial equation it satisfies (or show that no such polynomial equation exists).
It’s often easier to use degrees of extensions: \(\theta\) is algebraic over \(\mathbb{Q}\) if and only if \([\mathbb{Q}(\theta):\mathbb{Q}]<\infty\). In particular, if \(\theta\in L=\mathbb{Q}(\alpha_1,...,\alpha_n)\) where \([L:\mathbb{Q}]<\infty\), then \(\theta\) is algebraic over \(\mathbb{Q}\).
The even easier (perhaps too easy!) way is to use the fact that the algebraic numbers form a field, so sums of algebraic numbers are algebraic.
\((a)\) Yes, since \(\theta=1+\sqrt{3}+\sqrt{5}\in\mathbb{Q}(\sqrt{3},\sqrt{5})\) and \[[\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}]\leq [\mathbb{Q}(\sqrt{3}):\mathbb{Q}] [\mathbb{Q}(\sqrt{5}):\mathbb{Q}] = 2\times 2<\infty.\]
Taking the more explicit route, just eliminate the irrationalities, e.g. \[\begin{align*} (\theta-1-\sqrt{3})^2=5 \;&\implies\; (\theta-1)^2+3-2\sqrt{3}(\theta-1)=5 \\ \;&\implies\; (\theta^2-2\theta-1)=2(\theta-1)\sqrt{3} \\ \;&\implies\; (\theta^2-2\theta-1)^2=12(\theta-1)^2 \\ \end{align*}\]
Though we didn’t need it, we’ve found \(\theta\) is a root of \(x^4-4x^3-10x^2+28x-11\) (and actually this is the minimal polynomial).
\((b)\) Yes, since \(\theta=\sqrt{2}+\sqrt[4]{2}\in\mathbb{Q}(\sqrt[4]{2})\) and \([\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}]= 4<\infty\).
(Alternatively, show \(\theta^4-4\theta^2-8\theta+2=0\).)
\((c)\) Yes, since \(\theta=\sqrt{2}+\sqrt[3]{3}\in\mathbb{Q}(\sqrt{2},\sqrt[3]{3})\) and \[[\mathbb{Q}(\sqrt{2},\sqrt[3]{3}):\mathbb{Q}]\leq [\mathbb{Q}(\sqrt{2}):\mathbb{Q}] [\mathbb{Q}(\sqrt[3]{3}):\mathbb{Q}]=2\times 3<\infty.\]
(The minimal polynomial is actually \(x^6-6x^4-6x^3+12x^2-36x+1\).)
\((d)\) This time the answer is no. Let \(\theta=\sqrt{\pi}-1\). Then \(\pi=\theta^2+1\in\mathbb{Q}(\theta)\) and \(\mathbb{Q}(\pi)\subset\mathbb{Q}(\theta)\). But \(\pi\) is transcendental and \([\mathbb{Q}(\pi):\mathbb{Q}]=\infty\) so \([\mathbb{Q}(\theta):\mathbb{Q}]=\infty\) as well.
\((e)\) No, for similar reasons. If \(\theta=\sqrt{\pi}+\sqrt{7}\), then \(\pi=(\theta-\sqrt{7})^2\) and so \(\mathbb{Q}(\pi)\subset\mathbb{Q}(\theta,\sqrt{7})\), hence \[ [\mathbb{Q}(\theta,\sqrt{7}):\mathbb{Q}]=\infty\quad\implies\quad [\mathbb{Q}(\theta,\sqrt{7}):\mathbb{Q}(\theta)] [\mathbb{Q}(\theta):\mathbb{Q}]=\infty\] But \([\mathbb{Q}(\theta,\sqrt{7}):\mathbb{Q}(\theta)]\leq 2\) so we must have \([\mathbb{Q}(\theta):\mathbb{Q}]=\infty\).
\((f)\) And again, no: \(\theta=\sqrt[5]{1+\sqrt{e}}\) implies \(e=(\theta^5-1)^2\in\mathbb{Q}(\theta)\) so \(\mathbb{Q}(e)\subset\mathbb{Q}(\theta)\). But \(e\) is transcendental and \([\mathbb{Q}(e):\mathbb{Q}]=\infty\) so \([\mathbb{Q}(\theta):\mathbb{Q}]=\infty\) as well.
Exercise 2.2 Find the minimal polynomial of \(\theta\) over the field \(K\) where:
\(\;(a)\;\;\theta=\sqrt[3]{1+\sqrt{3}}\) and \(K=\mathbb{Q},\hspace{2em}\) \(\;(b)\;\;\theta=\sqrt{2}+\sqrt[3]{2}\) and \(K=\mathbb{Q},\)
\(\;(c)\;\;\theta=e^{2\pi i/5}\) and \(K=\mathbb{Q},\hspace{3.75em}\) \(\;(d)\;\;\theta=\sqrt{2}\) and \(K=\mathbb{Q}(i),\)
\(\;(e)\;\;\theta=\sqrt[3]{2}\) and \(K=\mathbb{Q}(\sqrt{2}).\)
Solution
General tip: To find the minimal polynomial \(m(x)\) of some \(\theta\) over \(K\), it’s often necessary to find its degree \(\deg(m(x))=[K(\theta):K]\).
\((a)\) With \(\theta=\sqrt[3]{1+\sqrt{3}}\), we have \[\theta^3=1+\sqrt{3}\quad\implies\quad (\theta^3-1)^2=3\quad\implies\quad \theta^6-2\theta^3-2=0.\] So \(\theta\) is a root of the monic polynomial \(x^6-2x^3-2\in\mathbb{Q}[x]\). This polynomial is also irreducible over \(\mathbb{Q}\) by using Eisenstein’s Criterion with \(p=2\). Hence it is the minimal polynomial of \(\theta\) over \(\mathbb{Q}\).
Problems Class Discussion. We were quite lucky here, as it’s not always so obvious that a polynomial is irreducible or we might have forgotten about Eisenstein’s Criterion. How could we still answer the question? If we could show that \([\mathbb{Q}(\theta):\mathbb{Q}]=6\), we’d be done, as that means the minimal polynomial of \(\theta\) has degree \(6\). Consider the tower \(\mathbb{Q}\subset\mathbb{Q}(\sqrt{3})\subset\mathbb{Q}(\theta)\).
Since \([\mathbb{Q}(\sqrt{3}):\mathbb{Q}]=2\), we would like to show that \([\mathbb{Q}(\alpha):\mathbb{Q}(\sqrt{3})]=3\). As \(\alpha^3=1+\sqrt{3}\), this is the same as showing \(1+\sqrt{3}\) is not a cube in \(\mathbb{Q}(\sqrt{3})\).
Suppose \((a+b\sqrt{3})^3=1+\sqrt{3}\) for some \(a,b\in\mathbb{Q}\).
Then, \(\;\;a^3+3a^2b\sqrt{3}+9ab^2+3b^3\sqrt{3}=1+\sqrt{3}\quad\implies\quad\begin{cases} \;\,a^3+9ab^2=1 \\ 3a^2b+3b^3=1\end{cases}\)
Now try to show there are no \(a,b\in\mathbb{Q}\) satisfying these two equations. If \(a,b\) were integers, it would be easy, but we only know \(a,b\in\mathbb{Q}\). It can be done by writing \(a,b\) with a minimal common denominator, then using an “infinite descent” argument but this is quite hard! So let’s find a better way.
Here’s a really useful fact: if \(\sqrt{3}\) is a root of a polynomial \(g(x)\in\mathbb{Q}[x]\), then so is \(-\sqrt{3}\). (Notice how similar this is to the fact that for any root of \(g(x)\in\mathbb{R}[x]\), the complex conjugate is also a root.)
How to prove this remarkable fact? By the Division Algorithm, \[g(x)=(x^2-3)q(x)+r_0+r_1x \quad\text{where $r_0,r_1\in\mathbb{Q}$}\] and setting \(x=\sqrt{3}\) gives \(0=r_0+r_1\sqrt{3}\). But \(\sqrt{3}\) is irrational so \(r_0=r_1=0\), i.e. \(g(x)\) is divisible by \(x^2-3\). So let’s have another go at the question using this.
Suppose \((a+b\sqrt{3})^3=1+\sqrt{3}\) for some \(a,b\in\mathbb{Q}\).
Then \((a-b\sqrt{3})^3=1-\sqrt{3}\) and multiplying gives \((a+b\sqrt{3})^3(a-b\sqrt{3})^3=(1+\sqrt{3})(1-\sqrt{3})\).
Thus \((a^2-3b^2)^3=-2\) and so \(\sqrt[3]{-2}\in\mathbb{Q}\). This is false and so we are done! The minimal polynomial of \(\theta\) over \(\mathbb{Q}\) does have degree \(6\) so must equal \(x^6-2x^3-2\).
Note it is generally necessary to do extra work to find the degree of the minimal polynomial. Suppose we considered the similar looking number \(\theta=\sqrt[3]{2+\sqrt{5}}\). Then \[\theta^3=2+\sqrt{5}\quad\implies\quad (\theta^3-2)^2=5\quad\implies\quad \theta^6-4\theta^3-1=0\] so \(\theta\) is a root of the monic polynomial \(x^6-4x^3-1\in\mathbb{Q}[x]\). However, this is not the minimal polynomial of \(\theta\) over \(\mathbb{Q}\). Indeed, notice that \(\left(\dfrac{1+\sqrt{5}}{2}\right)^3=2+\sqrt{5}\) so \(\theta=\dfrac{1+\sqrt{5}}{2}\) actually has a quadratic minimal polynomial \(x^2-x-1\) over \(\mathbb{Q}\).
\((b)\) Given \(\theta=\sqrt{2}+\sqrt[3]{2}\), eliminating the irrationalities gives \[\begin{align*} (\theta-\sqrt{2})^3=2 \quad &\implies\quad \theta^3+6\theta-2=\sqrt{2}(3\theta^2+2) \\ \quad &\implies\quad (\theta^3+6\theta-2)^2=2(3\theta^2+2)^2 \\ \quad &\implies\quad \theta^6-6\theta^4-4\theta^3+12\theta^2-24\theta-4=0 \end{align*}\] Thus we find a degree \(6\) polynomial \[x^6-6x^4+12x^2-24x-4\in\mathbb{Q}[x]\] with root \(\theta\). But how do we know this is the minimal polynomial of \(\theta\)? We don’t know it is irreducible and it’s not obvious why it might be… Instead, we will show that \([\mathbb{Q}(\theta):\mathbb{Q}]=6\) directly. To do this, we could compute that \(1,\theta,\theta^2,\theta^3,\theta^4,\theta^5\) are linearly independent over \(\mathbb{Q}\). However, we can save a bit of effort by noticing that \(\theta=(2^{1/6})^3+(2^{1/6})^2\) and so \[\mathbb{Q}\subset\mathbb{Q}(\theta)\subset\mathbb{Q}(2^{1/6}).\] Since \([\mathbb{Q}(2^{1/6}):\mathbb{Q}]=6\), the Tower Law implies that \([\mathbb{Q}(\theta):\mathbb{Q}]=1,2,3\) or \(6\).
Working in the \(\mathbb{Q}\)-basis \(1,2^{1/6},2^{2/6},2^{3/6},2^{4/6},2^{5/6}\) of \(\mathbb{Q}(2^{1/6})/\mathbb{Q}\), after a bit of calculation we find
- \(1\) has coordinates \((1,0,0,0,0,0)\),
- \(\theta\) has coordinates \((0,0,1,1,0,0)\),
- \(\theta^2\) has coordinates \((2,0,0,0,1,2)\),
- \(\theta^3\) has coordinates \((2,6,6,2,0,0)\).
These vectors are clearly linearly independent (the last two entries are only non-zero for \(\theta^2\).) Hence \([\mathbb{Q}(\theta):\mathbb{Q}]\geq 4\) and so must equal \(6\). Hence \[x^6-6x^4+12x^2-24x-4\in\mathbb{Q}[x]\] is indeed the minimal polynomial.
\((c)\) We have \(0=\theta^5-1=(\theta-1)(\theta^4+\theta^3+\theta^2+\theta+1)\) and so \(\theta\) is a root of \[f(x)=x^4+x^3+x^2+x+1\in\mathbb{Q}[x].\] We have already seen in lectures that this is irreducible - it is the \(p\)th cyclotomic polynomial \((x^p-1)/(x-1)\) where \(p=5\) is prime. Hence \(f(x)\) is the minimal polynomial of \(\theta\).
Recall this proof of irreducibility: applying Eisenstein’s criterion to \[f(x+1)=x^4+5x^3+10x^2+10x+5\] with \(p=5\) shows \(f(x+1)\) is irreducible, hence \(f(x)\) is as well.
\((d)\) There are various ways to do this, all ending with the minimal polynomial \(f(x)=x^2-2\in\mathbb{Q}(i)[x]\). We could work by looking for roots: if \(f(x)\) was reducible in \(\mathbb{Q}(i)[x]\), then it would have a root in \(\mathbb{Q}(i)\). But for \(a,b\in\mathbb{Q}\), \[\begin{align*} (a+bi)^2=2 \quad &\implies\quad a^2-b^2+2abi=2 \\ \quad &\implies\quad a^2-b^2=2\;\;\text{and}\;\; 2ab=0 \\ \quad &\implies\quad a=0,\; b^2=-2\;\;\text{or}\;\; b=0,\; a^2=2 \\ \end{align*}\] which is impossible as \(\sqrt{2}\) is irrational.
Or we could work with the Tower Law, using \([\mathbb{Q}(i):\mathbb{Q}]=[\mathbb{Q}\sqrt{2}):\mathbb{Q}]=2\): \[\begin{align*} i\not\in\mathbb{Q}(\sqrt{2}),\; i^2\in\mathbb{Q}(\sqrt{2}) \quad &\implies\quad [\mathbb{Q}(i,\sqrt{2}):\mathbb{Q}(\sqrt{2})]=2 \\ \quad &\implies\quad [\mathbb{Q}(i,\sqrt{2}):\mathbb{Q}]=4 \\ \quad &\implies\quad [\mathbb{Q}(i,\sqrt{2}):\mathbb{Q}(i)]=2 \end{align*}\] so the minimal polynomial of \(\sqrt{2}\) over \(\mathbb{Q}(i)\) has degree \(2\) and must be \(f(x)\).
\((e)\) The minimal polynomial of \(\sqrt[3]{2}\) over \(K=\mathbb{Q}(\sqrt{2})\), has degree \([K(\sqrt[3]{2}):K]\).
Clearly \(\sqrt{2},\sqrt[3]{2}\in\mathbb{Q}(\sqrt[6]{2})\) so \(K(\sqrt[3]{2})\subset\mathbb{Q}(\sqrt[6]{2})\).
Also, \(\sqrt[6]{2}=\sqrt{2}/\sqrt[3]{2}\in K(\sqrt[3]{2})\) and so \(K(\sqrt[3]{2})=\mathbb{Q}(\sqrt[6]{2})\), which has degree \(6\) over \(\mathbb{Q}\).
Hence using \([K(\sqrt[3]{2}):\mathbb{Q}]=[K(\sqrt[3]{2}):K] [K:\mathbb{Q}]\) we get \([K(\sqrt[3]{2}):K]=3\).
Thus the minimal polynomial has degree \(3\) so must be \(x^3-2\).
Exercise 2.3 For the following field extensions \(L/K\), find a basis of \(L\) (as a vector space over \(K\)).
\(\;(a)\;\;L=\mathbb{Q}(\sqrt{2}\,,\,i)\) over \(K=\mathbb{Q},\hspace{5.1em}\) \(\;(b)\;\;L=\mathbb{Q}(\sqrt{2}\,,\,\sqrt{5})\) over \(K=\mathbb{Q},\)
\(\;(c)\;\;L=\mathbb{Q}(\sqrt[3]{5}\,,\,i)\) over \(K=\mathbb{Q},\hspace{5.1em}\) \(\;(d)\;\;L=\mathbb{Q}(\sqrt[3]{2}-2\sqrt[3]{4})\) over \(K=\mathbb{Q},\)
\(\;(e)\;\;L=\mathbb{Q}(\sqrt{2}\,,\,\sqrt{3}\,,\,\sqrt{7})\) over \(K=\mathbb{Q},\hspace{2em}\) \(\;(f)\;\;L=\mathbb{Q}(\sqrt[3]{1+\sqrt{3}})\) over \(K=\mathbb{Q}(\sqrt{3}),\)
\(\;(g)\;\;L=\mathbb{R}(x)\) over \(K=\mathbb{R}(x+x^{-1}),\hspace{3em}\) \(\;(h)\;\;L=\mathbb{R}(x)\) over \(K=\mathbb{R}(x^2+x^{-2}),\)
\(\;(i)\;\;L=\mathbb{F}_2(\alpha)\) over \(K=\mathbb{F}_2\) where \(\alpha^4+\alpha+1=0,\)
\(\;(j)\;\;L=\mathbb{F}_3(\alpha)\) over \(K=\mathbb{F}_3\) where \(\alpha^3+\alpha^2+2=0.\)
Solution
Recall the key to proving the Tower Law: given \(K\subset M\subset L\), if \(\{\alpha_i \mid i\in I \}\) is a basis of \(M/K\) and \(\{\beta_j\mid j\in J\}\) is a basis of \(L/M\), then \(\{\alpha_i\beta_j\; \mid i\in I, j\in J \}\) is a basis of \(L/K\).
\((a)\) Apply this to the tower \(\mathbb{Q}\subset\mathbb{Q}(\sqrt{2})\subset\mathbb{Q}(\sqrt{2},i)\):
We have \(i\not\in\mathbb{Q}(\sqrt{2})\) so \(\mathbb{Q}(\sqrt{2},i)\) has a basis \(\{1,i\}\) over \(\mathbb{Q}(\sqrt{2})\).
Also \(\mathbb{Q}(\sqrt{2})\) has a basis \(\{1,\sqrt{2}\}\) over \(\mathbb{Q}\).
So \(\mathbb{Q}(\sqrt{2},i)\) has a basis \(\{1,\sqrt{2},i,i\sqrt{2}\}\) over \(\mathbb{Q}\).
\((b)\) Using the tower \(\mathbb{Q}\subset\mathbb{Q}(\sqrt{2})\subset\mathbb{Q}(\sqrt{2},\sqrt{5})\):
Show that \(\sqrt{5}\not\in\mathbb{Q}(\sqrt{2})\) so that \(\mathbb{Q}(\sqrt{2},\sqrt{5})\) has a basis \(\{1,\sqrt{5}\}\) over \(\mathbb{Q}(\sqrt{2})\).
Also \(\mathbb{Q}(\sqrt{2})\) has a basis \(\{1,\sqrt{2}\}\) over \(\mathbb{Q}\).
So \(\mathbb{Q}(\sqrt{2},\sqrt{5})\) has a basis \(\{1,\sqrt{2},\sqrt{5},\sqrt{10}\}\) over \(\mathbb{Q}\).
\((c)\) Similarly, using \(\mathbb{Q}\subset\mathbb{Q}(\sqrt[3]{5})\subset\mathbb{Q}(\sqrt[3]{5},i)\)
We have \(i\not\in\mathbb{Q}(\sqrt[3]{5})\) so \(\mathbb{Q}(\sqrt[3]{5},i)\) has a basis \(\{1,i\}\) over \(\mathbb{Q}(\sqrt[3]{5})\).
Also \(\mathbb{Q}(\sqrt[3]{5})\) has a basis \(\{1,\sqrt[3]{5},\sqrt[3]{25}\}\) over \(\mathbb{Q}\).
So \(\mathbb{Q}(\sqrt[3]{5},i)\) has a basis \(\{1,\sqrt[3]{5},\sqrt[3]{25},i,i\sqrt[3]{5},i\sqrt[3]{25}\}\) over \(\mathbb{Q}\).
\((d)\) Notice that \(\mathbb{Q}\subset L\subset\mathbb{Q}(\sqrt[3]{2})\), \(L\neq\mathbb{Q}\) and \(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}\) has prime degree \(3\). This implies \(L=\mathbb{Q}(\sqrt[3]{2})\), and so a basis is \(\{1,\sqrt[3]{2},\sqrt[3]{4}\}\).
\((e)\) Using \(\mathbb{Q}\subset\mathbb{Q}(\sqrt{2},\sqrt{3})\subset\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{7})\):
In the same way as above, show that \(\sqrt{3}\not\in\mathbb{Q}(\sqrt{2})\) and find \(\mathbb{Q}(\sqrt{2},\sqrt{3})\) has a basis \(\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}\) over \(\mathbb{Q}\).
Now show that \(\sqrt{7}\not\in\mathbb{Q}(\sqrt{2},\sqrt{3})\) e.g. as follows: if \(\sqrt{7}=\alpha+\beta\sqrt{3}\) for some \(\alpha,\beta\in\mathbb{Q}(\sqrt{2})\), then \[\begin{align*} (\alpha+\beta\sqrt{3})^2=7 \quad &\implies\quad (\alpha^2+3\beta^2)+2\alpha\beta\sqrt{3}=7 \\ \quad &\implies\quad \alpha^2+3\beta^2=7\;\;\text{and}\;\; 2\alpha\beta=0 \\ \quad &\implies\quad \alpha=0,\; 3\beta^2=7\;\;\text{or}\;\; \beta=0,\; \alpha^2=7 \\ \quad &\implies\quad 3\sqrt{7/3}=\sqrt{21}\in\mathbb{Q}(\sqrt{2})\;\;\text{or}\;\; \sqrt{7}\in\mathbb{Q}(\sqrt{2}) \\ \end{align*}\] Both cases are impossible by a similar argument to the proof that \(\sqrt{3}\not\in\mathbb{Q}(\sqrt{2})\). Hence \(L\) has basis \(\{1,\sqrt{7}\}\) over \(\mathbb{Q}(\sqrt{2},\sqrt{3})\).
Finally \([L:\mathbb{Q}]=8\) and we have a basis \(\{1,\sqrt{2},\sqrt{3},\sqrt{6},\sqrt{7},\sqrt{14},\sqrt{21},\sqrt{42}\}\)
More generally, you might guess that for distinct primes \(p_1,...,p_n\), one has \[[\mathbb{Q}(\sqrt{p_1},...,\sqrt{p_n}):\mathbb{Q}]=2^n\] and you’d be right!
\((f)\) The polynomial \(x^3-(1+\sqrt{3})\) is irreducible in \(K[x]=\mathbb{Q}(\sqrt{3})[x]\). To prove this,
suppose \((a+b\sqrt{3})^3=1+\sqrt{3}\) for some \(a,b\in\mathbb{Q}\).
Taking conjugates gives \((a-b\sqrt{3})^3=1-\sqrt{3}\).
Then \((a^2-3b^2)^3=(a+b\sqrt{3})^3(a-b\sqrt{3})^3=(1+\sqrt{3})(1-\sqrt{3})=-2\) which is impossible since \(\sqrt[3]{2}\not\in\mathbb{Q}\).
Thus the cubic polynomial \(x^3-(1+\sqrt{3})\) has no linear factors in \(K[x]\) so must be irreducible.
This implies a \(K\)-basis of \(L\) is \(\{1,\theta,\theta^2\}\) where \(\theta=\sqrt[3]{1+\sqrt{3}}\).
\((g)\) We are considering the extension \(\mathbb{R}(t)\subset\mathbb{R}(x)\) where \(t=x+x^{-1}\). Notice then that \(x^2-tx+1=0\), i.e. \(x\) is a root of the quadratic polynomial \[f(X)=X^2-tX+1\in K[X].\] We claim that \(f(X)\) is irreducible in \(K[X]\). By the analogue of Gauss’s Lemma from lectures, if \(f(X)\) has a root in \(K=\mathbb{R}(t)\), then it has a root \(\alpha\in\mathbb{R}[t]\). Furthermore, \(\alpha\) divides the constant term \(1\) in \(f(X)\) and so \(\alpha\in\mathbb{R}\). But now \(\alpha^2-t\alpha+1=0\) in \(\mathbb{R}[t]\) and a polynomial is zero only when its coefficients are all zero, i.e. \(\alpha^2+1=0\) and \(\alpha=0\). This is clearly impossible for any \(\alpha\in\mathbb{R}\).
Thus \(f(X)\) is the minimal polynomial of \(x\) over \(K\) so \([L:K]=\deg(f(x))=2\) and a basis is given by \(\{1,x\}\). Explicitly, \[L=\mathbb{R}(x)=\left\{a+bx \mid a,b\in K=\mathbb{R}(x+x^{-1})\right\}.\]
\((h)\) Let \(t=x^2+x^{-2}\) so that \(K=\mathbb{R}(t)\) and \(L=K(x)\). Then \(x^4-tx^2+1=0\), i.e. \(x\) is a root of \[f(X)=X^4-tX^2+1\in K[X].\] At the end of Section 2.3.2 of the notes, we actually showed this polynomial is irreducible in \(K[X]\). Here’s a quick reminder:
It has degree \(4\) (in the indeterminate \(x\)) so we need to check it has no linear or quadratic factors.
By Gauss’s Lemma, if \(f(X)\) has a root in \(K=\mathbb{R}(t)\), then it has a root \(\alpha\in\mathbb{R}[t]\). But \(\alpha\) must divide the constant term \(1\) in \(f(X)\) and so \(\alpha\) must itself be constant, i.e. \(\alpha\in\mathbb{R}\). We have \(\alpha^4-t\alpha^2+1=0\) in \(\mathbb{R}[t]\) and the coefficients of this polynomial in \(t\) must be zero, i.e. \(\alpha^4+1=0\) and \(\alpha^2=0\). This is impossible and hence \(f(X)\) has no linear factors.
Again by Gauss’s Lemma, if \(f(X)\) is a product of two quadratic polynomials in \(\mathbb{R}(t)[X]\) then \[f(X)=X^4-tX^2+1=(X^2+aX+b)(X^2+cX+d)\] for some polynomials \(a, b, c, d\in\mathbb{R}[t]\). The constant coefficient gives \(bd=1\) which implies that \(b, d\in\mathbb{R}^\times\), the \(x^3\) coefficient gives \(a+c=0\) which implies that \(\deg(a)=\deg(c)\) and the \(x^2\) coefficient gives \(b+d+ac=-t\) which implies that \(\deg(ac)=1\). As a result, \(\deg(ac)=2\deg(a)=1\implies \deg(a)=1/2\) which is impossible.
Thus \(f(X)\) is the minimal polynomial of \(x\) over \(K\) so \([L:K]=\deg(f(X))=4\) and a \(K\)-basis for \(L\) is \(\{1,x,x^2,x^3\}\).
\((i)\) The polynomial \(x^4+x+1\in\mathbb{F}_2[x]\) is irreducible, as we saw in Exercise 1.1. (It has no roots in \(\mathbb{F}_2\) so no linear factors, and no quadratic factors since the only irreducible quadratic is \(x^2+x+1\)).
We have a simple extension with \([\mathbb{F}_2(\alpha):\mathbb{F}_2]=4\) and a basis is \(\{1,\alpha,\alpha^2,\alpha^3\}\).
\((j)\) The polynomial \(x^3+x^2+2\in\mathbb{F}_3[x]\) has degree \(3\) but no roots in \(\mathbb{F}_3\). That means it is irreducible, \([\mathbb{F}_3(\alpha):\mathbb{F}_3]=3\) and a basis is \(\{1,\alpha,\alpha^2\}\).
Exercise 2.4 Write each of the following in the form \(a+b\sqrt[3]{2}+c\sqrt[3]{4}\) with \(a, b, c\in\mathbb{Q}\):
\(\;(a)\;\;\dfrac{1}{\sqrt[3]{2}},\hspace{2em}\) \(\;(b)\;\;\dfrac{1}{1+\sqrt[3]{2}},\hspace{2em}\) \(\;(c)\;\;\dfrac{1+\sqrt[3]{2}}{1+\sqrt[3]{2}+\sqrt[3]{4}},\)
\(\;(d)\;(\star)\;\dfrac{1}{r+s\sqrt[3]{2}+t\sqrt[3]{4}}\;\;\) for arbitrary \(r,s,t\in\mathbb{Q}\) with \(r+s\sqrt[3]{2}+t\sqrt[3]{4}\neq 0\).
Solution
Recall that \(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}\) has basis \(\{1,\sqrt[3]{2},\sqrt{4}\}\) so this question reduces to linear algebra.
\((a)\) We have \[\begin{align*} \dfrac{1}{\sqrt[3]{2}}=a+b\sqrt[3]{2}+c\sqrt[3]{4} \quad &\iff\quad a\sqrt[3]{2}+b\sqrt[3]{4}+2c=1 \\ \quad &\iff\quad a=0,\;\;b=0, \;\; c=1/2 \\ &\,\qquad\qquad\text{so}\;\; \dfrac{1}{\sqrt[3]{2}}=\dfrac{\sqrt[3]{4}}{2} \end{align*}\]
\((b)\) We have \[\begin{align*} \dfrac{1}{1+\sqrt[3]{2}}=a+b\sqrt[3]{2}+c\sqrt[3]{4} \quad &\iff\quad (1+\sqrt[3]{2})(a+b\sqrt[3]{2}+2c\sqrt[3]{4})=1 \\ \quad &\iff\quad (a+2c)+(a+b)\sqrt[3]{2}+(b+c)\sqrt[3]{4}=1 \\ \quad &\iff\quad a+2c=1,\;\; a+b=0 \;\;\text{and}\;\; b+c=0 \\ \quad &\iff\quad a=1/3,\;\; b=-1/3 \;\;\text{and}\;\; c=1/3 \\ &\,\qquad\qquad\text{so}\;\; \dfrac{1}{1+\sqrt[3]{2}}=\dfrac{1-\sqrt[3]{2}+\sqrt[3]{4}}{3} \end{align*}\]
Notice we could have done this more quickly, using \(A^3+B^3=(A+B)(A^2-AB+B^2)\) with \(A=1\) and \(B=\sqrt[3]{2}\).
\((c)\) We have \[\dfrac{1+\sqrt[3]{2}}{1+\sqrt[3]{2}+\sqrt[3]{4}}=a+b\sqrt[3]{2}+c\sqrt[3]{4}\] \[\begin{align*} \quad &\iff\quad (1+\sqrt[3]{2}+\sqrt[3]{4})(a+b\sqrt[3]{2}+c\sqrt[3]{4})=1+\sqrt[3]{2} \\ \quad &\iff\quad (a+2b+2c)+(a+b+2c)\sqrt[3]{2}+(a+b+c)\sqrt[3]{4}=1 \\ \quad &\iff\quad a+2b+2c=1,\;\; a+b+2c=1 \;\;\text{and}\;\; a+b+c=0 \\ \quad &\iff\quad a=-1,\;\; b=0 \;\;\text{and}\;\; c=1 \\ &\,\qquad\qquad\text{so}\;\; \dfrac{1+\sqrt[3]{2}}{1+\sqrt[3]{2}+\sqrt[3]{4}}=-1+\sqrt[3]{4} \end{align*}\] The simple form of this answer suggests there might have been a cheeky shortcut and indeed there is: \[\dfrac{1+\sqrt[3]{2}}{1+\sqrt[3]{2}+\sqrt[3]{4}}=\dfrac{(1+\sqrt[3]{2})(1-\sqrt[3]{2})}{(1+\sqrt[3]{2}+\sqrt[3]{4})(1-\sqrt[3]{2})} =\dfrac{1-\sqrt[3]{4}}{1-2}=-1+\sqrt[3]{4}\]
\((d)\) This can be done by brute force in the same way. Multiplying out \[(r+s\sqrt[3]{2}+t\sqrt[3]{4})(a+b\sqrt[3]{2}+c\sqrt[3]{4})=1\] leads to three linear equations. They can be expressed in matrix form as \[\begin{pmatrix} r & 2t & 2s \\ s & r & 2t \\ t & s & r \end{pmatrix}\begin{pmatrix} a \\ b \\ c \end{pmatrix}=\begin{pmatrix} 1 \\ 0 \\ 0\end{pmatrix}\] and solving for \(a,b,c\) (using a computer helps!) gives \[\frac{1}{r+s\sqrt[3]{2}+t\sqrt[3]{4}}=\frac{(r^2-2st)+(2t^2-rs)\sqrt[3]{2}+(s^2-rt)\sqrt[3]{4}}{D}\] where \(D=r^3+2s^3+4t^3-6rst\) is the determinant of the matrix. Of course, we are left with the problem that \(D\) might equal zero but I’ll let you worry about that…(it only happens if \(r=s=t=0\)).
There is a more sophisticated way to think about this. Let \(\omega=e^{2\pi i/3}\), then we can think about “conjugates” of \(\sqrt[3]{2}\) - they are the other roots of the polynomial \(x^2-3\), i.e. \(\omega\sqrt[3]{2}\) and \(\omega^2\sqrt[3]{2}\).
And multiplying “conjugates” does magic: \[(r+s\sqrt[3]{2}+t\sqrt[3]{4})(r+s\omega\sqrt[3]{2}+t\omega^2\sqrt[3]{4})(r+s\omega^2\sqrt[3]{2}+t\omega\sqrt[3]{4})=D\] Try multiplying the second two factors, using \(\omega^2+\omega+1=0\) - you’ll find all \(\omega\)’s disappear and we get the formula for the inverse given above. For Number Theory III people, the rational number \(D\) is the called the norm of \(r+s\sqrt[3]{2}+t\sqrt[3]{4}\) in the cubic number field \(\mathbb{Q}(\sqrt[3]{2})\).
Exercise 2.5 Write each of the following in the form \(a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}\) with \(a, b, c, d\in\mathbb{Q}\):
\(\;(a)\;\;\dfrac{1}{\sqrt{2}+\sqrt{3}},\hspace{2em}\) \(\;(b)\;\;\dfrac{1}{1+\sqrt{2}+\sqrt{3}},\hspace{2em}\) \(\;(c)\;\;\dfrac{\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}+\sqrt{6}}.\)
Solution
Similarly to the last question, \(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}\) has basis \(\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}\) so we could always do some linear algebra. However, we perhaps might be able to spot a shortcut…
\((a)\) The difference of two squares is useful - we have \((\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})=1\) so \[\frac{1}{\sqrt{2}+\sqrt{3}}=-\sqrt{2}+\sqrt{3}.\]
\((b)\) \((1+\sqrt{2}+\sqrt{3})(1+\sqrt{2}-\sqrt{3})=(1+\sqrt{2})^2-3=2\sqrt{2}\) so \[\frac{1}{1+\sqrt{2}+\sqrt{3}}=\frac{1+\sqrt{2}-\sqrt{3}}{2\sqrt{2}}=\frac{2+\sqrt{2}-\sqrt{6}}{4}.\]
\((c)\) This time, spot that the denominator factorises: \[\begin{align*} \frac{\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}+\sqrt{6}}=\frac{\sqrt{2}+\sqrt{3}}{(1+\sqrt{2})(1+\sqrt{3})} &=\frac{(\sqrt{2}+\sqrt{3})(1-\sqrt{2})(1-\sqrt{3})}{(1+\sqrt{2})(1-\sqrt{2})(1+\sqrt{3})(1-\sqrt{3})} \\ &=\frac{(\sqrt{2}+\sqrt{3})(1-\sqrt{2}-\sqrt{3}+\sqrt{6})}{2} \\ &=\frac{-5+4\sqrt{2}+3\sqrt{3}-2\sqrt{6}}{2} \end{align*}\]
Something to notice - multiplying by “conjugates”, i.e. swapping \(\sqrt{2}\leftrightarrow-\sqrt{2}\) and/or \(\sqrt{3}\leftrightarrow-\sqrt{3}\) appears to be very useful. This is not an accident…
Exercise 2.6 Let \(L=\mathbb{F}_2(\theta)\) where \(\theta\) is a root of \(f(x)=x^4+x+1\in\mathbb{F}_2[x]\). Write each of the following in the form \(a+b\theta+c\theta^2+d\theta^3\) with \(a, b, c, d\in\mathbb{F}_2\):
\(\;(a)\;\;\theta^{-1},\hspace{3em}\) \(\;(b)\;\;\theta^5,\hspace{3em}\) \(\;(c)\;\;\theta^{15},\hspace{3em}\) \(\;(d)\;\;(1+\theta+\theta^2)^{-1}.\)
Solution
Working in \(L=\mathbb{F}_2(\theta)\), we can repeatedly use \(2=0\) and \(\theta^4=-1-\theta=1+\theta\). This makes calculations quite easy…
\((a)\) Notice \(\theta^4+\theta+1=0\) implies \(\theta(\theta^3+1)=1\) so \(\theta^{-1}=1+\theta^3\).
\((b)\) This time, \(\theta^5=\theta\theta^4=\theta(1+\theta)=\theta+\theta^2\).
\((c)\) We have \[\begin{align*} \theta^{15}=(\theta^5)^3=(\theta+\theta^2)^3 &=\theta^3+\theta^4+\theta^5+\theta^6 \\ &=\theta^3+(1+\theta)+(\theta+\theta^2)+(\theta^2+\theta^3)=1. \end{align*}\] A more efficient way would be to remember squaring is really nice in characteristic \(2\): \[\theta^{16}=(\theta^4)^4=(1+\theta)^4=(1+\theta^2)^2=1+\theta^4=\theta\] and so \(\theta^{15}=1\). More generally, we will prove next term for any finite field \(\mathbb{F}_q\), we have \(\alpha^q=\alpha\) for all \(\alpha\in\mathbb{F}_q\), so this is the special case \(\theta^{16}=\theta\) in \(\mathbb{F}_{16}=\mathbb{F}_2(\theta)\).
\((d)\) If you can’t spot any tricks, the linear algebra route will always work: multiplying \((1+\theta+\theta^2)(a+b\theta+c\theta^2+d\theta^3)=1\) gives \[\begin{align*} &\quad a+(a+b)\theta+(a+b+c)\theta^2+(b+c+d)\theta^3+(c+d)\theta^4+d\theta^5=1 \\ \quad &\iff\quad (a+c+d)+(a+b+c)\theta+(a+b+c+d)\theta^2+(b+c+d)\theta^3=1 \\ \quad &\iff\quad a+c+d=1,\;\; a+b+c=0,\;\; a+b+c+d=0,\;\; b+c+d=0 \\ \quad &\iff\quad a=0,\;\; b=1,\;\; c=1,\;\; d=0 \end{align*}\] and so \((1+\theta+\theta^2)^{-1}=\theta+\theta^2\).
There are quicker ways, however. For instance,
recall a difference of two cubes is \((A-B)(A^2+AB+B^2)=A^3-B^3\).
In our question, this means \((1+\theta)(1+\theta+\theta^2)=1+\theta^3\).
Now multiply both sides by \(\theta\) to get \((\theta+\theta^2)(1+\theta+\theta^2)=\theta+\theta^4=1\).
Exercise 2.7 Let \(L=\mathbb{F}_2(\theta)\) where \(\theta\) is a root of \(f(x)=x^3+x^2+1\in\mathbb{F}_2[x]\). Show that \(f(x)\) can be written as a product of three linear factors with coefficients in \(L\).
Solution
To factorise \(f(x)\) into linear factors, we need to find three roots. The field \(L=\mathbb{F}_2(\theta)\) only has \(8\) elements \[\mathbb{F}_2(\theta)=\left\{0,\, 1,\, \theta,\, 1+\theta,\, \theta^2,\, 1+\theta^2,\, \theta+\theta^2,\, 1+\theta+\theta^2 \right\}\] so we could just test which are roots. By definition, \(\theta\) is one of them and \(\theta^3=-\theta^2-1=\theta^2+1\). Trying \(\theta^2\), for instance, we get \[f(\theta^2)=\theta^6+\theta^4+1=(\theta^2+1)^2+\theta^4+1=\theta^4+1+\theta^4+1=0\] so \(\theta^2\) is also a root. We could continue through the list in the same way to find the third root is the last element in the list \(1+\theta+\theta^2\). This results in the factorisation \[f(x)=x^3+x^2+1=(x-\theta)(x-\theta^2)(x-\theta^2-\theta-1).\]
Thankfully, there is a more efficient way: remember that in characteristic \(2\), we have \[A^2+B^2+C^2+...=(A+B+C+...)^2\] In particular, \(f(\theta^2)=f(\theta)^2=0\) so \(\theta^2\) is a root. Similarly, \(f(\theta^4)=f(\theta^2)^2=0\) so we also get \(\theta^4\) is a root. Continuing, we find \(\theta,\theta^2,\theta^4,\theta^8,\theta^{16},...\) are all roots!
However, the set of non-zero elements \(\mathbb{F}_2(\theta)\) is a group under multiplication of order \(7\) so \(\theta^7=1\), and we obtain exactly three roots \(\theta, \theta^2, \theta^4\). Notice \(\theta^4=\theta^3+\theta=\theta^2+\theta+1\) is the root from earlier.
The same trick will work for any polynomial \(f(x)\in\mathbb{F}_p[x]\) for other primes \(p\), using \((A+B)^p=A^p+B^p\). If \(\theta\) is a root, then so are \(\theta^p,\theta^{p^2},\theta^{p^3},...\)
Exercise 2.8 Find the minimal polynomial of \(\alpha=\sqrt{7}+i\in\mathbb{C}\) over the field \(K\) in the following cases:
\(\;(a)\;\;K=\mathbb{R},\hspace{3em}\) \(\;(b)\;\;K=\mathbb{Q}(i),\hspace{3em}\) \(\;(c)\;\;K=\mathbb{Q}.\)
Solution
\((a)\) Since \(\sqrt{7}\in\mathbb{R}\), we have \(\mathbb{R}(\alpha)=\mathbb{R}(i)=\mathbb{C}\) and this has degree \(2\) over \(\mathbb{R}\). Also, \[(\alpha-\sqrt{7})^2=-1\quad\implies\quad \alpha^2-2\sqrt{7}\alpha+8=0\] so the minimal polynomial of \(\alpha\) over \(\mathbb{R}\) is \(x^2-2\sqrt{7}x+8\in\mathbb{R}[x]\).
\((b)\) This time, \(\mathbb{Q}(i)(\alpha)=\mathbb{Q}(i)(\sqrt{7})\) which has degree \(2\) over \(\mathbb{Q}(i)\). Also, \[(\alpha-i)^2=7\quad\implies\quad \alpha^2-2i\alpha-8=0\] so the minimal polynomial of \(\alpha\) over \(\mathbb{Q}(i)\) is \(x^2-2ix-8\in\mathbb{Q}(i)[x]\).
\((c)\) The extension \(\mathbb{Q}(i,\sqrt{7})/\mathbb{Q}\) has basis \(\{1,i,\sqrt{7},i\sqrt{7}\}\) (in a similar way to other examples we’ve seen such as \(\mathbb{Q}(\sqrt{2},\sqrt{7})/\mathbb{Q}\)). We have \(\mathbb{Q}\subset\mathbb{Q}(\alpha)\subset\mathbb{Q}(i,\sqrt{7})\) so \([\mathbb{Q}(\alpha):\mathbb{Q}]\) divides \([\mathbb{Q}(i,\sqrt{7}):\mathbb{Q}]=4\).
However, the three elements \(1\), \(\alpha=\sqrt{7}+i\) and \(\alpha^2=6+2i\sqrt{7}\) are linearly independent over \(\mathbb{Q}\) and so \([\mathbb{Q}(\alpha):\mathbb{Q}]\geq 3\). Hence we must have \([\mathbb{Q}(\alpha):\mathbb{Q}]=4\) and the minimal polynomial of \(\alpha\) over \(\mathbb{Q}\) has degree \(4\). To find it, eliminate the irrationalities: \[\begin{align*} (\alpha-\sqrt{7})^2=-1 \quad &\implies\quad \alpha^2-2\sqrt{7}\alpha+8=0 \\ \quad &\implies\quad (\alpha^2+8)^2=(2\sqrt{7}\alpha)^2=28\alpha^2 \\ \quad &\implies\quad \alpha^4-12\alpha^2+64=28 \end{align*}\] so the minimal polynomial of \(\alpha\) over \(\mathbb{Q}\) is \(x^4-12x^2+64\in\mathbb{Q}[x]\).
An alternative, perhaps quicker way to show \([\mathbb{Q}(\alpha):\mathbb{Q}]=4\) is to show directly that \(\mathbb{Q}(\alpha)=\mathbb{Q}(i,\sqrt{7})\). Obviously, \(\alpha\) can be written in terms of \(\sqrt{7}\) and \(i\). We just have to write \(\sqrt{7}\) and \(i\) in terms of \(\alpha\).
Notice \((\sqrt{7}+i)(\sqrt{7}-i)=8\) so
\[
\begin{cases} \sqrt{7}+i=\alpha \\\sqrt{7}-i=8\alpha^{-1} \end{cases}\implies
\begin{cases} \sqrt{7}=(\alpha+8\alpha^{-1})/2\in\mathbb{Q}(\alpha) \\ \;\;\;\,i=(\alpha-8\alpha^{-1})/2\in\mathbb{Q}(\alpha)\end{cases}\]
Exercise 2.9 Find the minimal polynomials over \(\mathbb{Q}\) of the following algebraic numbers:
\(\;(a)\;\;\sqrt{1+\sqrt{2}},\hspace{3em}\) \(\;(b)\;\;\sqrt{\sqrt{2}-i}.\)
Solution
Tip: it is often easier to show a polynomial is a minimal polynomial by first determining its degree, rather than using a Gauss’s Lemma argument to show it is irreducible.
\((a)\) Let \(\alpha=\sqrt{1+\sqrt{2}}\) so that \(\alpha^2=1+\sqrt{2}\in\mathbb{Q}(\sqrt{2})\) and we have a tower \[\mathbb{Q}\subset\mathbb{Q}(\sqrt{2})=\mathbb{Q}(\alpha^2)\subset\mathbb{Q}(\alpha).\] We might guess that \([\mathbb{Q}(\alpha):\mathbb{Q}(\sqrt{2})]=2\) so that the minimal polynomial of \(\alpha\) over \(\mathbb{Q}\) has degree \([\mathbb{Q}(\alpha):\mathbb{Q}]=4\), but we need to prove it. We want to show \(\alpha\not\in\mathbb{Q}(\sqrt{2})\).
Suppose that \(1+\sqrt{2}\) is a square in \(\mathbb{Q}(\sqrt{2}\)), i.e. \((a+b\sqrt{2})^2=1+\sqrt{2}\) for \(a,b\in\mathbb{Q}\).
Take conjugates to get \((a-b\sqrt{2})^2=1-\sqrt{2}\).
Then \(0\leq(a^2-2b^2)^2=(a+b\sqrt{2})^2(a-b\sqrt{2})^2=(1+\sqrt{2})(1-\sqrt{2})=-1\) which is false.
Hence \([\mathbb{Q}(\alpha):\mathbb{Q}]=4\) and rearranging \((\alpha^2-1)^2=2\) shows the minimal polynomial is \(x^4-2x^2-1\).
\((b)\) Let \(\alpha=\sqrt{\sqrt{2}-i}\) and \(\beta=\alpha^2=\sqrt{2}-i\). We clearly have \(\mathbb{Q}\subset\mathbb{Q}(\beta)\subset\mathbb{Q}(\sqrt{2},i)\).
Also, \((\sqrt{2}-i)(\sqrt{2}+i)=3\) and \[\begin{cases} \sqrt{2}-i=\beta \\ \sqrt{2}+i=3\beta^{-1} \end{cases}\implies \begin{cases} \sqrt{2}=(\beta+3\beta^{-1})/2\in\mathbb{Q}(\beta) \\ \;\;\;\,i=(3\beta^{-1}-\beta)/2\in\mathbb{Q}(\beta)\end{cases}\] Hence \(\mathbb{Q}(\beta)=\mathbb{Q}(\sqrt{2},i)\) and by similar arguments as before, \([\mathbb{Q}(\sqrt{2},i):\mathbb{Q}]=4\).
Consider the tower \[\mathbb{Q}\subset\mathbb{Q}(\beta)=\mathbb{Q}(\sqrt{2},i)\subset\mathbb{Q}(\alpha).\] We will show that \(\sqrt{2}-i\) is not a square in \(\mathbb{Q}(\sqrt{2},i)\), as then \([\mathbb{Q}(\alpha):\mathbb{Q}(\sqrt{2},i)]=2\). By the Tower Law, we will then know the minimal polynomial of \(\alpha\) over \(\mathbb{Q}\) has degree \([\mathbb{Q}(\alpha):\mathbb{Q}]=8\).
Suppose that \((a+bi)^2=\sqrt{2}-i\) where \(a,b\in\mathbb{Q}(\sqrt{2})\)
Taking (complex) conjugates gives \((a-bi)^2=\sqrt{2}+i\)
Multiplying gives \((a^2+b^2)^2=3\) and so \(\sqrt{3}\in\mathbb{Q}(\sqrt{2})\). This is false.
Hence the minimal polynomial of \(\alpha\) over \(\mathbb{Q}\) does indeed have degree \(8\). We just need to find it: \[\begin{align*} &\quad \alpha^2=\sqrt{2}-i \quad \implies\quad (\alpha^2+i)^2=2 \quad\implies\quad \alpha^4-3=-2i\alpha^2 \\ \quad &\implies\quad (\alpha^4-3)^2=-4\alpha^4 \quad\implies\quad \alpha^8-2\alpha^4+9=0 \end{align*}\] and the required minimal polynomial is \(x^8-2x^4+9\).
Exercise 2.10 Find the degree \([L:K]\) of the following field extensions and give a basis for \(L\) over \(K\):
\(\;(a)\;\;L=\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})\) over \(K=\mathbb{Q},\hspace{3.75em}\) \(\;(b)\;\;L=\mathbb{Q}(\sqrt{2},\sqrt[3]{2})\) over \(K=\mathbb{Q},\)
\(\;(c)(\star)\;\;L=\mathbb{Q}(\sqrt[3]{2},\sqrt[3]{6},\sqrt[3]{24})\) over \(K=\mathbb{Q},\hspace{2em}\) \(\;(d)\;\;L=\mathbb{Q}(\sqrt{2},\sqrt{3})\) over \(K=\mathbb{Q}(\sqrt{2}+\sqrt{3}),\)
\(\;(e)\;\;L=\mathbb{Q}(\sqrt{2},\sqrt{6}+\sqrt{10})\) over \(K=\mathbb{Q}(\sqrt{3}+\sqrt{5}).\)
Solution
\((a)\) We have \([L:K]=8\) and a basis is \(\{1,\sqrt{2},\sqrt{3},\sqrt{6},\sqrt{5},\sqrt{10},\sqrt{15},\sqrt{30}\}\).
As we’ve seen before, \(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}\) has degree \(4\) and basis \(\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}\).
The key point is to show that \(\sqrt{5}\not\in\mathbb{Q}(\sqrt{2},\sqrt{3})\). Suppose on the contrary that \(\sqrt{5}=\alpha+\beta\sqrt{3}\) for some \(\alpha,\beta\in\mathbb{Q}(\sqrt{2})\), then \[\begin{align*} (\alpha+\beta\sqrt{3})^2=5 \quad &\implies\quad (\alpha^2+3\beta^2)+2\alpha\beta\sqrt{3}=5 \\ \quad &\implies\quad \alpha^2+3\beta^2=5\;\;\text{and}\;\; 2\alpha\beta=0 \\ \quad &\implies\quad \alpha=0,\; 3\beta^2=5\;\;\text{or}\;\; \beta=0,\; \alpha^2=5 \\ \quad &\implies\quad 3\sqrt{5/3}=\sqrt{15}\in\mathbb{Q}(\sqrt{2})\;\;\text{or}\;\; \sqrt{5}\in\mathbb{Q}(\sqrt{2}) \\ \end{align*}\]
Both cases are impossible and \(L\) has basis \(\{1,\sqrt{5}\) over \(\mathbb{Q}(\sqrt{2},\sqrt{3})\).
Using the Tower Law (and its proof) then gives the degree and a basis of \(L/K\).
\((b)\) We have \([L:K]=6\) and a basis is \(\{1,2^{1/6},2^{2/6},2^{3/6},2^{4/6},2^{5/6}\}\).
- Notice that \(\sqrt{2},\sqrt[3]{2}\in\mathbb{Q}(2^{1/6})\) and \(2^{1/6}=\sqrt{2}/\sqrt[3]{2}\in\mathbb{Q}(\sqrt{2},\sqrt[3]{2})\).
- Hence \(L=\mathbb{Q}(\sqrt{2},\sqrt[3]{2})=\mathbb{Q}(2^{1/6})\) is a simple extension and \(2^{1/6}\) is algebraic of degree \(6\).
\((c)\) We have \([L:K]=9\) and a basis is \(\{1,\sqrt[3]{2},\sqrt[3]{4},\sqrt[3]{3},\sqrt[3]{6},\sqrt[3]{12},\sqrt[3]{9},\sqrt[3]{18},\sqrt[3]{36}\}\).
First notice \(24=2^2\times 6\) so \(L=\mathbb{Q}(\sqrt[3]{2},\sqrt[3]{6})\). Also \(6=2\times 3\) so we can write \(L\) in the simpler form \(L=\mathbb{Q}(\sqrt[3]{2},\sqrt[3]{3})\) and can consider the tower \[K=\mathbb{Q}\;\;\subset\;\; M=\mathbb{Q}(\sqrt[3]{2})\;\;\subset\;\;L=\mathbb{Q}(\sqrt[3]{2},\sqrt[3]{3})\]
We know \(M/K\) has degree \(3\) and basis \(\{1,\sqrt[3]{2},\sqrt[3]{4}\}\).
For \(L/M\), suppose that \(\sqrt[3]{3}\in \mathbb{Q}(\sqrt[3]{2})\), i.e. \((a+b\sqrt[3]{2}+c\sqrt[3]{4})^3=3\) for some \(a,b,c\in\mathbb{Q}\). Then \[(a^3+2b^3+4c^3+12abc)+3(a^2b+2b^2c+2ac^2)\sqrt[3]{2}+3(a^2c+2bc^2+ab^2)\sqrt[3]{4}=3\] \[\implies \begin{cases} a^3+2b^3+4c^3+12abc=3 \\ a^2b+2b^2c+2ac^2=0 \\ a^2c+2bc^2+ab^2=0 \end{cases}\] Multiply the 2nd equation by \(c\) and subtract it from the 3rd equation multiplied by \(b\). This give \(a(b^3-2c^3)=0\). If \(a\neq 0\), then \(b^3=2c^3\) implies \(\sqrt[3]{2}\in\mathbb{Q}\) which is false. So \(a=0\) and the 2nd equation implies \(b\) or \(c\) is zero. But then the first equation reduces to \(4c^3=3\) or \(2b^3=3\), both of which are impossible.
Hence \([L:M]\neq 1\) and so must equal \(3\) (since we are adjoining a cube root). A basis for \(L/M\) is \(\{1,\sqrt[3]{3},\sqrt[3]{9}\}\) and combining with the basis for \(M/K\) we get the basis for \(L/K\) given above.
\((d)\) We have \([L:K]=1\) and a basis is just \(\{1\}\). (!)
\(\alpha=\sqrt{2}+\sqrt{3}\) is in \(\mathbb{Q}(\sqrt{2},\sqrt{3})\)
\((\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})=-1\) so \(\alpha^{-1}=\sqrt{3}-\sqrt{2}\) and \(\begin{cases} \sqrt{2}=(\alpha-\alpha^{-1})/2\in\mathbb{Q}(\sqrt{2}+\sqrt{3}) \\ \sqrt{3}=(\alpha+\alpha^{-1})/2\in\mathbb{Q}(\sqrt{2}+\sqrt{3})\end{cases}\)
So \(L=\mathbb{Q}(\sqrt{2},\sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})=K\) is a degree \(1\) extension.
\((e)\) We have \([L:K]=2\) and a basis is \(\{1,\sqrt{2}\}\).
To see this, notice \(L=\mathbb{Q}(\sqrt{2},\sqrt{6}+\sqrt{10})=\mathbb{Q}(\sqrt{3}+\sqrt{5})(\sqrt{2})=K(\sqrt{2})\).
Then show \(2\) is not a square in \(K=\mathbb{Q}(\sqrt{3}+\sqrt{5})\).
Exercise 2.11 Prove that \(f(x)=x^2-5\) is irreducible over \(\mathbb{Q}(\sqrt[3]{7})\).
Solution
Suppose on the contrary that \(x^2-5\) is not irreducible over \(\mathbb{Q}(\sqrt[3]{7})\) and so \(\sqrt{5}\in\mathbb{Q}(\sqrt[3]{7})\). Then we have a tower of fields \[\mathbb{Q}\subset\mathbb{Q}(\sqrt{5})\subset\mathbb{Q}(\sqrt[3]{7})\] and the Tower Law implies \([\mathbb{Q}(\sqrt{5}):\mathbb{Q}]=2\) divides \([\mathbb{Q}(\sqrt[3]{7}):\mathbb{Q}]=3\), contradiction.
Notice how considering degrees of extensions can show polynomials are irreducible really quickly!Exercise 2.12 \((\star)\;\) Let \(p>2\) be an odd prime. Show that there is exactly one field (up to isomorphism) with \(p^2\) elements. Hint: try completing the square.
Solution
Any field \(K\) with \(p^2\) elements contains a prime subfield and since \(p\) is the only prime dividing \(p^2\), the only possible choice is \(\mathbb{F}_p\). Now \(K\) is a quadratic extension of \(\mathbb{F}_p\) so is of the form \(\mathbb{F}_p(\theta)\) where \(\theta\) is a root of an irreducible monic quadratic polynomial \(f(x)=x^2+ax+b\in\mathbb{F}_p[x]\). Since \(p\) is odd, we can divide by \(2\) in \(\mathbb{F}_p\) so can complete the square to find \(\theta\) via the usual quadratic formula \[\theta^2+a\theta+b=0\implies \theta=-a/2\pm\sqrt{r}\quad\text{where $r=a^2/4-b$.}\] Notice \(\sqrt{r}\not\in\mathbb{F}_p\) as otherwise \(\theta\in\mathbb{F}_p\). So \(K=\mathbb{F}_p(\theta)=\mathbb{F}_p(\sqrt{r})\) where \(r\in\mathbb{F}_p\) is not a square, i.e. every quadratic extension of \(\mathbb{F}_p\) is formed by adjoining a square root.
Now \(p\) is odd, so the multiplicative group of non-zero elements \(\mathbb{F}_p^\times\) has order \(p-1\), which is even. Furthermore, the set of non-zero squares, denoted by \({\mathbb{F}_p^\times}^2\), is a subgroup of index \(2\) in \(\mathbb{F}_p^\times\). It’s easy to check it is a subgroup. To see that it has index \(2\), notice \(a^2=(p-a)^2\) for \(a\in\mathbb{F}_p\) so \[{\mathbb{F}_p^\times}^2=\left\{1^2, 2^2, ..., \left(\frac{p-1}{2}\right)^2\right\}\subset \mathbb{F}_p^\times.\] These are distinct, since for \(a, b\in\{1,2,...,(p-1)/2\}\in\mathbb{F}_p\), we have \(a+b\neq 0\) so \[a^2=b^2\;\;\implies\;\; (a-b)(a+b)=0\;\;\implies\;\; a-b=0\;\;\implies\;\; a=b.\] Hence \(\mathbb{F}_p^\times\) is the disjoint union of \({\mathbb{F}_p^\times}^2\) (which are the squares) and a coset \(r{\mathbb{F}_p^\times}^2\) (which are the non-squares) for any given non-square \(r\in\mathbb{F}_p^\times\). In particular, if \(s\) is any other non-square in \(\mathbb{F}_p^\times\), then \(s=rt^2\) for some \(t\in\mathbb{F}_p\) and \(\mathbb{F}_p(\sqrt{r})=\mathbb{F}_p(\sqrt{s})\).
Next term, we will see an alternative, more general method which will show there is a unique (up to isomorphism) field with \(p^m\) elements for any \(m\geq 1\).