$$ \DeclareMathOperator*{\Arg}{Arg} \DeclareMathOperator*{\Ln}{Ln} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} $$

Topic 4 - Limits and Series

Week 11 Material

Question 4.1 \(\;\) Find the limits of the following sequences as \(n\rightarrow\infty\) or say why no limit exists.

\(\;\;(a)\;\; s_n=\dfrac{2n+1}{n+2},\hspace{1cm}\) \(\;\;(b)\;\; s_n=\dfrac{n+(-1)^n}{n},\hspace{1cm}\) \(\;\;(c)\;\; s_n=\dfrac{n^5}{17n^4+12},\)

\(\;\;(d)\;\; s_n=\cos(n\pi),\hspace{1cm}\) \(\;\;(e)\;\; s_n=\dfrac{\sin(n\pi/2)}{n},\hspace{1cm}\) \(\;\;(f)^*\;\; s_n=\dfrac{7+2^n}{8+2^{n+1}}.\)


Question 4.2 \(\;\)

\(\;\;(a)\;\;\) Let \(c>1\) be a constant. Show that the sequence \(s_n=c^n\) is unbounded as \(n\rightarrow\infty\).

\(\qquad\;\,\) Hint: look at what happens when \(n\geq\dfrac{\ln M}{\ln c}\) for large \(M\).

\(\;\;(b)\;\;\) Find the limit of the sequence \(s_n=\left(\dfrac{2n+1}{n+1}\right)^{2n}\) as \(n\rightarrow\infty\) or carefully explain why it

\(\qquad\;\,\) doesn’t exist. Hint: first show that \(\dfrac{2n+1}{n+1}\geq\dfrac32\) for \(n\geq 1\).


Question 4.3 \(\!{}^*\;\) Show that \(0\leq \dfrac{2^n}{n!} \leq \dfrac{4}{n}\) for all \(n\geq 1\). Use this to find the limit of \(\dfrac{2^n}{n!}\) as \(n\rightarrow\infty\).


Question 4.4 \(\;\) \(\;\;(a)\;\;\) By considering an area under the graph \(y=1/x\), show that for \(n\geq 1\), we have \[\frac{1}{n+1}\leq\ln\left(1+\frac{1}{n}\right)\leq\frac{1}{n}.\]

\(\;\;(b)\;\;\) Conclude that \(\left(1+\frac1n\right)^n\leq e\leq\left(1+\frac1n\right)^{n+1}\) and hence express \(e\) as the limit of a sequence.


Question 4.5 \(\;\) Evaluate the following limits of functions or say why no limit exists.

\(\;\;(a)\;\;\displaystyle\lim_{x\rightarrow -5}\;\dfrac{x^2}{5-x},\hspace{1.8cm}\) \(\;\;(b)\;\;\displaystyle\lim_{x\rightarrow 2}\;\dfrac{1/x-1/2}{x-2}\hspace{1.7cm}\) \(\;\;(c)\;\;\displaystyle\lim_{x\rightarrow 0}\;(2x-8)^{1/3},\)

\(\;\;(d)^*\;\;\displaystyle\lim_{x\rightarrow 9}\;\dfrac{x-9}{\sqrt{x}-3}\hspace{1.8cm}\) \(\;\;(e)\;\;\displaystyle\lim_{x\rightarrow 1}\;\dfrac{x^3-1}{x^2-1}\hspace{2.4cm}\) \(\;\;(f)\;\;\displaystyle\lim_{x\rightarrow 3}\;\dfrac{x^2+x+12}{x-3},\)

\(\;\;(g)\;\;\displaystyle\lim_{x\rightarrow 3}\;\dfrac{x^2+x-12}{x-3}\hspace{0.9cm}\) \(\;\;(h)\;\;\displaystyle\lim_{x\rightarrow 3}\;\dfrac{(x^2+x-12)^2}{x-3}\hspace{0.8cm}\) \(\;\;(i)\;\;\displaystyle\lim_{x\rightarrow 3}\;\dfrac{x^2+x-12}{(x-3)^2}.\)


Question 4.6 \(\;\) Using the standard limit \(\displaystyle\lim_{x\rightarrow 0}\dfrac{\sin{x}}{x}=1\), evaluate

\(\;\;(a)\;\;\displaystyle\lim_{x\rightarrow 0}\;\dfrac{\sin(4x)}{3x},\hspace{1.1cm}\) \(\;\;(b)^*\;\;\displaystyle\lim_{x\rightarrow 0}\;\dfrac{\sin^2(4x)}{3x^2},\hspace{1.1cm}\) \(\;\;(c)\;\;\displaystyle\lim_{x\rightarrow 0}\;\dfrac{\cos(2x)-1}{x},\)

\(\;\;(d)\;\;\displaystyle\lim_{x\rightarrow 0}\; x\cot(3x),\hspace{1cm}\) \(\;\;(e)\;\;\displaystyle\lim_{x\rightarrow 0}\;\dfrac{1-\cos{x}}{x^2},\hspace{1cm}\) \(\;\;(f)\;\;\displaystyle\lim_{x\rightarrow \pi/2}\;\dfrac{\cos{x}}{2x-\pi}.\)


Question 4.7 \(\;\) Evaluate the limits as \(x\rightarrow\infty\) of the following functions:

\(\;\;(a)\;\;\dfrac{2x+1000}{x+2},\hspace{1cm}\) \(\;\;(b)\;\;\dfrac{3x^3+7}{4x^3+2x^2+3x+1},\hspace{1cm}\) \(\;\;(c)^*\;\;\sqrt{x^2+x}-x.\)


Week 12 Material

Question 4.8 \(\;\) Find the points where the following functions are not continuous:

\(\;\;(a)\;\;\dfrac{x^4+5x+7}{x^2-7x+10},\hspace{1cm}\) \(\;\;(b)\;\;\sec{x}=\dfrac{1}{\cos{x}},\hspace{1cm}\) \(\;\;(c)\;\;\dfrac{\tan{x}}{x^2-x}.\)


Question 4.9 \(\!{}^*\;\) Sketch the following function and determine where it is not continuous: \[f(x)=\begin{cases} 2x+1 &\quad\text{for $x\leq 0$,} \\ 1 &\quad\text{for $0<x\leq 1$,} \\ x^2+1 &\quad\text{for $x>1$.} \end{cases}\]


Question 4.10 \(\;\) The function \(f(x)=\dfrac{\sqrt{x+3}-2}{x-1}\) isn’t continuous at \(x=1\) since it isn’t defined there. Modify it by defining \(f(1)\) so that the function becomes continuous for all \(x\geq 0\).


Question 4.11 \(\;\) By using the definition \(f'(x)=\displaystyle\lim_{h\rightarrow 0}\; \frac{f(x+h)-f(x)}{h}\), find the derivative of:

\(\;\;(a)\;\;f(x)=x^3,\hspace{2.75cm}\) \(\;\;(b)\;\;f(x)=x^n\;\;\) for \(n\in\mathbb{N},\;\;\) (Hint: use the Binomial Theorem)

\(\;\;(c)^*\;\;f(x)=x^{-1}\;\;\) for \(x\neq 0,\hspace{0.3cm}\) \(\;\;(d)\;\;f(x)=\sqrt{x}\;\;\) for \(x>0\),

\(\;\;(e)\;\;f(x)=\cos{x},\hspace{2.25cm}\) \(\;\;(f)\;\;f(x)=1/\sqrt{1+x}\;\;\) for \(x>-1.\)


Question 4.12 \(\;\) What can you say about the limit \[\displaystyle\lim_{h\rightarrow 0}\; \frac{f(x+h)-f(x)}{h}\] for \(f(x)=x^{1/3}\) in the special case \(x=0\)? What does this tell us about the graph of \(f(x)\)?


Question 4.13 \(\!{}^*\;\) A function \(f(x)\) is defined by \(f(x)=\begin{cases} (x-1)^2 &\;\text{for $x\leq 1$,} \\ (x-1)^4 &\;\text{for $x\geq 1$}. \end{cases}\)

How many times is it differentiable at \(x=1\)?


Question 4.14 \(\;\) Suppose \(f(x)\) is continuous at \(x=0\). Show that the function \(g(x)=f(x)\sin{x}\) is differentiable at \(x=0\) and find the derivative \(g'(0)\).


Question 4.15 \(\;\) Use the Intermediate Value Theorem to show that \(p(x)=x^4-2x-1\) has at least two roots in the interval \(-1<x<2\).


Question 4.16 \(\;\) Suppose we have a polynomial \(p(x)=x^n+a_{n-1}x^{n-1}+...+a_1x+a_0\) where \(n\) is odd. By considering the limits of \(p(x)\) as \(x\rightarrow\pm\infty\), show that \(p(x)=0\) has a real solution. Why is this different to the case where \(n\) is even?


Question 4.17 \(\;\) Suppose a quadratic polynomial \(p(x)=ax^2+bx+c\) has a local minimum at \(x=2\) and that \(p(-1)=3\) and \(p(3)=-1\). Find \(a\), \(b\) and \(c\). Repeat the same question but with a local maximum at \(x=2\).


Week 13 Material

Question 4.18 \(\;\) Use l’Hôpital’s Rule (in its “\(0/0\)” form) to evaluate the following limits:

\(\;(a)\;\displaystyle\lim_{x\rightarrow 0}\,\dfrac{\ln (1+x)-x}{1-\cos{x}},\hspace{0.7cm}\) \(\;(b)\;\displaystyle\lim_{x\rightarrow 0}\,\dfrac{\cosh{x}-\cos{x}}{x^2},\hspace{0.9cm}\) \(\;(c)^*\;\displaystyle\lim_{x\rightarrow 0}\,\dfrac{\tan{x}-x}{x-\sin{x}},\)

\(\;(d)\;\displaystyle\lim_{x\rightarrow 0}\,\dfrac{\arcsin{x}}{x},\hspace{1.7cm}\) \(\;(e)\;\displaystyle\lim_{x\rightarrow 0}\,\dfrac{\sqrt{5+2x}-\sqrt{5}}{x},\hspace{0.8cm}\) \(\;(f)\;\displaystyle\lim_{x\rightarrow 0}\,\dfrac{\arcsin{x}}{\sin{x}},\)

\(\;(g)\;\displaystyle\lim_{x\rightarrow \pi/2}\,\dfrac{\cos{x}}{\pi-2x},\hspace{1.5cm}\) \(\;(h)\;\displaystyle\lim_{x\rightarrow 1}\,\dfrac{\ln{x}}{x^2-1},\hspace{2.3cm}\) \(\;(i)\;\displaystyle\lim_{x\rightarrow 0}\,\dfrac{\sin{x}+x}{x+x^2},\)

\(\;(j)\;\displaystyle\lim_{x\rightarrow \pi/2}\,\dfrac{\tan(5x)}{\tan{x}},\hspace{1.4cm}\) \(\;(k)\;\displaystyle\lim_{x\rightarrow\infty}\,\sqrt{x^2+x+1}-\sqrt{x^2+1}.\)


Question 4.19 \(\;\) Use l’Hôpital’s Rule (in its “\(\infty/\infty\)” form) to evaluate the following limits:

\(\;(a)\;\displaystyle\lim_{x\rightarrow\infty}\, \dfrac{3x^3+7}{4x^3+2x^2+3x+1},\hspace{0.95cm}\) \(\;(b)\;\displaystyle\lim_{x\rightarrow\infty}\, \dfrac{\ln{x}}{x^2},\hspace{2.8cm}\) \(\;(c)^*\;\displaystyle\lim_{x\rightarrow\infty}\, \dfrac{x^2}{e^x},\)

\(\;(d)\;\displaystyle\lim_{x\rightarrow\infty}\, \dfrac{\ln{x}}{x^p} \;\;\) for \(p>0,\hspace{1.7cm}\) \(\;(e)\;\displaystyle\lim_{x\rightarrow \infty}\, \dfrac{x^p}{e^x}\;\;\) for \(p>0.\hspace{0.9cm}\)


Question 4.20 \(\;\) Use Leibniz’s Rule to find the third derivative of the following functions

\(\;(a)^*\;f(x)=x^4\ln{x},\hspace{1.5cm}\) \(\;(b)\;f(x)=e^{-2x}\cos (3x),\hspace{1.5cm}\) \(\;(c)\;f(x)=(x-1)^4\sin (2x).\)


Question 4.21 \(\;\) For the function \(y(x)=e^{-x^2}\), find the derivative \(y'(x)\) as a simple product involving \(x\) and \(y\). Hence apply Leibniz’s Rule to show that for \(n\geq 1\), \[y^{(n+1)}+2xy^{(n)}+2ny^{(n-1)}=0\] where \(y^{(n)}\) denotes the \(n\)th derivative of \(y\).


Question 4.22 \(\;\) Use the Newton-Raphson method to find, correct to three significant figures, the positive real solution of each of the following:

\(\;\;(a)^*\;\;\) \(x^4+x-3=0\) starting with \(x_0=1\). What happens if you start at \(x_0=-1\) instead?

\(\;\;(b)\;\;\) \(e^{2x}-x=2\) starting with \(x_0=0.5\),

\(\;\;(c)\;\;\) \(1000x^3-x-1=0\) starting with \(x_0=0.1\). What happens if you start at \(x_0=0\) instead?


Question 4.23 \(\;\) The Lambert function \(W(a)\) for \(a\geq 0\) gives the value \(W(a)=w\) such that \(we^w=a\) and has applications in many areas such as quantum mechanics and biochemistry. It can not be expressed nicely in terms of other more familiar functions, but can be approximated by a sequence \(w_0, w_1,...\) tending to \(w\). Use the Newton-Raphson method to find an iteration that improves an approximation \(w_{k}\) to \(w_{k+1}\).

With a calculator, find \(W(2)\) to 3 decimal places, starting from an initial guess \(w_0=1\).


Week 14 Material

Question 4.24 \(\;\) By looking at the Taylor series \(\sin{x}=x-x^3/6+\cdots\), it’s possible to show that \[x-\frac{x^3}{6}<\sin{x}<x\qquad\text{for $x>0$.}\] Use this to find approximately the range of values of \(x>0\) for which

\(\;(a)\; 1-\dfrac{\sin{x}}{x}<10^{-2},\hspace{1cm}\) \(\;(b)\; 1-\dfrac{\sin{x}}{x}<10^{-4},\hspace{1cm}\) \(\;(c)\; 1-\dfrac{\sin{x}}{x}<10^{-10}.\)

Hence guess the limit of \(\;\dfrac{\sin{x}}{x}\;\) as \(x\rightarrow 0\). (You should already know the answer!)


Question 4.25 \(\;\) Use the definition of Taylor polynomials to find:

\(\;(a)\;\) the degree 3 Taylor polynomial of \(f(x)=\cosh{x}\) about \(x=0\).

\(\;(b)\;\) the degree 3 Taylor polynomial of \(f(x)=\tan{x}\) about \(x=0\).

\(\;(c)\;\) the degree 3 Taylor polynomial of \(f(x)=e^{x/2}\) about \(x=3\).

\(\;(d)^*\;\) the degree 3 Taylor polynomial of \(f(x)=\sqrt{x}\) about \(x=a>0\). What happens if you try to expand about \(x=0\)?


Question 4.26 \(\;\) \(\;(a)\;\) Show that the Taylor expansion for \(f(x)=\dfrac{1}{1-x}\) (valid for \(|x|<1\)) is \[\frac{1}{1-x}=1+x+x^2+x^3+\cdots\] \(\;(b)\;\) Use this to find a closed formula for the series \(\;x+2x^2+3x^3+4x^4+\cdots\)


Question 4.27 \(\;\) Use the Taylor series about \(x=0\) for \(\cos{x}\), \(\sin{x}\) and \(\ln(1+x)\) to find the degree 4 Taylor polynomial about \(x=0\) of the following functions:

\(\;(a)\;\;\cos(2x),\hspace{3cm}\) \(\;(b)\;\;\sin^2x,\hspace{3cm}\) \(\;(c)\;\;\ln(2+x^2).\)


Question 4.28 \(\;\) The Sine Integral \(\operatorname{Si}(x)\) is defined by \[\operatorname{Si}(x)=\int_0^{x}\;\frac{\sin{t}}{t}\;dt\] and has applications in areas such as Signal Processing. Find the Taylor series for \(\operatorname{Si}(x)\) about \(x=0\).


Question 4.29 \(\;\) Use standard Taylor series expansions from the table in the lecture notes to evaluate the limits of the following functions as \(x\rightarrow 0\).

\(\;(a)\;\;\dfrac{\ln (1+x)-x}{1-\cos{x}},\hspace{2cm}\) \(\;(b)\;\;\dfrac{\cosh{x}-\cos{x}}{x^2},\hspace{2cm}\) \(\;(c)^*\;\;\dfrac{\tan{x}-x}{x-\sin{x}},\)

\(\;(d)\;\;\dfrac{\arcsin{x}}{x},\hspace{3.05cm}\) \(\;(e)\;\;\dfrac{\sqrt{5+2x}-\sqrt{5}}{x},\hspace{1.8cm}\) \(\;(f)\;\;\dfrac{\arcsin{x}}{\sin{x}},\)

\(\;(g)\;\;\dfrac{1}{x^3} \left(\dfrac{1}{\sin{x}}-\dfrac{1}{x}-\dfrac{x}{6}\right),\hspace{0.7cm}\) \(\;(h)\;\;\dfrac{\exp\left(\dfrac{\sin{x}}{1-3x}\right)-x-1}{x\cos{x}-\ln(1+x)}.\;\)

(These last two might take serious effort but would be virtually impossible using L’Hôpital’s Rule!)


Question 4.30 \(\;\) \(\;(a)\;\) Let \(f(x)=x/\sqrt{1+x^2}\). Show that \[(1+x^2)^2f''(x)+3f(x)=0\] and use this to find the degree 3 Taylor polynomial for \(f(x)\) about \(x=0\).

\(\;(b)\;\) Let \(f(x)=(\sinh^{-1}x)/\sqrt{1+x^2}\). Show that \[(1+x^2)f'(x)+f(x)=1\] and use this to find the degree 3 Taylor polynomial for \(f(x)\) about \(x=0\).


Question 4.31 \(\;\) \(\;(a)\;\) Use a Taylor polynomial for \(\cos{x}\) and the bound on the remainder term to estimate \(\cos(1/2)\) to within 0.01, without using a calculator.

\(\;(b)^*\;\) Use a Taylor polynomial for \(e^x\) and the bound on the remainder term to estimate \(e^{1/2}\) to within 0.01 without using a calculator. (You may use the fact that \(e<4\), which surprisingly is useful here.)


Question 4.32 \(\;\) Estimate the maximum error between \(f(x)=\sin{x}\) and its degree 3 Taylor polynomial about \(x=0\) for \(x\) in the interval \(-\pi/4\leq x\leq\pi/4\). How large is the error when \(\cos{x}\) is estimated in the same way?