$$ \DeclareMathOperator*{\Arg}{Arg} \DeclareMathOperator*{\Ln}{Ln} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} $$

Topic 2 - Complex Numbers

Week 4 Material

Question 2.1 \(\;\) If \(z_1=2+3i\) and \(z_2=-1+i\), find the real and imaginary parts of

\(\;\;(a)\;\;z_1+z_2,\hspace{1cm}\) \((b)\;\;z_1-z_2,\hspace{1cm}\) \((c)\;\;z_1z_2,\hspace{1cm}\) \((d)\;\;z_1/z_2,\)

\(\;\;(e)\;\;\overline{z_1}z_2,\hspace{1.5cm}\) \((f)\;\;z_1\overline{z_2},\hspace{1.5cm}\) \((g)\;\;z_1\overline{z_1},\hspace{1.cm}\) \((h)\;\;z_2\overline{z_2}\).


Quick Check

\((a)\;\;\) \(\Re(z_1+z_2)=1\quad\text{and}\quad \Im(z_1+z_2)=4.\)

\((b)\;\;\) \(\Re(z_1-z_2)=3\quad\text{and}\quad\Im(z_1+z_2)=2.\)

\((c)\;\;\) \(\Re(z_1z_2)=-5\quad\text{and}\quad\Im(z_1z_2)=-1.\)

\((d)\;\;\) \(\Re(z_1/z_2)=1/2\quad\text{and}\quad\Im(z_1/z_2)=-5/2.\)

\((e)\;\;\) \(\Re(\overline{z_1}z_2)=1\quad\text{and}\quad\Im(\overline{z_1}z_2)=5.\)

\((f)\;\;\) \(\Re(z_1\overline{z_2})=1\quad\text{and}\quad\Im(z_1\overline{z_2})=-5.\)

\((g)\;\;\) \(\Re(z_1\overline{z_1})=13\quad\text{and}\quad\Im(z_1\overline{z_1})=0.\)

\((h)\;\;\) \(\Re(z_2\overline{z_2})=2\quad\text{and}\quad\Im(z_2\overline{z_2})=0.\)


Question 2.2 \(\!{}^*\;\) Find the real and imaginary parts of

\(\;\;(a)\;\;\dfrac{2+5i}{3+2i},\hspace{1cm}\) \((b)\;\;\dfrac{1}{i^7},\hspace{1cm}\) \((c)\;\;\left(-\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}\right)^2,\hspace{1cm}\) \((d)\;\;\left(-\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}\right)^{33}.\)


Quick Check

\((a)\;\) The real part is \(16/13\) and the imaginary part is \(11/13\).

\((b)\;\) The real part is \(0\) and the imaginary part is \(1\).

\((c)\;\) The real part is \(-1/2\) and the imaginary part is \(-\sqrt{3}/2\).

\((d)\;\) The real part is \(1\) and the imaginary part \(0\).


Question 2.3 \(\;\) Suppose \(z=x+iy\) where \(x\) and \(y\) are real. Express each of the following in terms of \(x\) and \(y\).

\(\;\;(a)\;\;\Re(z^3),\hspace{1cm}\) \((b)\;\;\Im(z^3),\hspace{1cm}\) \((c)\;\;\Re\left(1/\overline{z}\right),\hspace{1cm}\) \((d)\;\;\Im(z+z^{-1}).\)


Quick Check

\((a)\;\) \(\;\Re(z^3)=x^3-3xy^2\). \(\hspace{1cm}\) \((b)\;\) \(\;\Im(z^3)=3x^2y-y^3\).

\((c)\;\) \(\;\Re\left(1/\overline{z}\right)=\dfrac{x}{x^2+y^2}\). \(\hspace{1cm}\) \((d)\;\) \(\;\Im(z+z^{-1})=y-\dfrac{y}{x^2+y^2}\).


Question 2.4 \(\;\) Calculate the modulus and principal argument of each of the following complex numbers:

\(\;\;(a)\;\;1+\sqrt{3}i,\hspace{2.2cm}\) \((b)\;\;3+2i,\hspace{3cm}\) \((c)\;\;-6i,\)

\(\;\;(d)\;\;\dfrac{2+i}{3-i}-\dfrac{4+i}{1+2i},\hspace{1cm}\) \((e)\;\;\dfrac{2+3i}{i}+\dfrac{5+10i}{2+i},\hspace{1cm}\) \((f)\;\;\dfrac{3+2i}{1+i}+\dfrac{5-2i}{-1+i}.\)


Quick Check

\((a)\;\) \(|1+\sqrt{3}i|=2\), \(\Arg(1+\sqrt{3}i)=\dfrac{\pi}{3}\).

\((b)\;\) \(|3+2i|=\sqrt{13}\), \(\Arg(3+2i)=\arctan\left(\dfrac23\right)\).

\((c)\;\) \(|-6i|=6\), \(\Arg(-6i)=-\dfrac{\pi}{2}\).

\((d)\;\) \(|z|=\sqrt{4.1}\), \(\Arg(z)=\pi-\arctan\left(\dfrac{19}{7}\right)\).

\((e)\;\) \(|z|=\sqrt{50}\), \(\Arg(z)=\arctan\left(\dfrac{1}{7}\right)\).

\((f)\;\) \(|z|=\sqrt{5}\), \(\Arg(z)=\arctan(2)-\pi\).


Question 2.5 \(\;\) If \(z_1=1+i\sqrt{3}\) and \(z_2=2+2i\), find the modulus and principal argument of

\(\;\;(a)^*\;\;z_1,\hspace{1.5cm}\) \((b)^*\;\;z_2,\hspace{1.5cm}\) \((c)\;\;\overline{z_1},\hspace{1.5cm}\) \((d)\;\;\overline{z_2},\)

\(\;\;(e)\;\;z_1z_2,\hspace{1cm}\) \((f)^*\;\;z_1/z_2,\hspace{1cm}\) \((g)\;\;z_2/z_1,\hspace{1cm}\) \((h)^*\;\;z_1+z_2.\)


Quick Check

\((a)\;\) Tutorial question

\((b)\;\) Tutorial question

\((c)\;\) \(\displaystyle |\overline{z_1}|=2\qquad\text{and}\qquad \Arg(\overline{z_1})=-\frac{\pi}{3}.\)

\((d)\;\) \(\displaystyle |\overline{z_2}|=2\sqrt{2}\qquad\text{and}\qquad \Arg(\overline{z_2})=-\frac{\pi}{4}.\)

\((e)\;\) \(\displaystyle |z_1z_2|=4\sqrt{2}\qquad\text{and}\qquad \Arg(z_1z_2)=\frac{7\pi}{12}.\)

\((f)\;\) Tutorial question

\((g)\;\) \(\displaystyle \left|\frac{z_2}{z_1}\right|=\sqrt{2}\qquad\text{and}\qquad \Arg\left(\frac{z_2}{z_1}\right)=-\frac{\pi}{12}.\)

\((h)\;\) Tutorial question


Question 2.6 \(\!{}^*\;\) Which of the following are true for all complex numbers \(z\) and \(w\)? In each case, either prove it is true or give a counterexample.

\(\;\;(a)\;\;\Re(z+w)=\Re(z)+\Re(w),\hspace{1.5cm}\) \((b)\;\;\Re(zw)=\Re(z)\Re(w),\)

\(\;\;(c)\;\;|z+w|=|z|+|w|,\hspace{3.3cm}\) \((d)\;\;\arg(z+w)=\arg(z)+\arg(w).\)


Quick Check

\((a)\;\) True. \(\hspace{1cm}\) \((b)\;\) False. \(\hspace{1cm}\) \((c)\;\) False. \(\hspace{1cm}\) \((d)\;\) False.


Question 2.7 \(\;\) Suppose \(a\), \(b\) and \(c\) are real numbers with \(b^2<4ac\) and \(z\) is a complex number satisfying \[az^2+bz+c=0.\] Find \(|z|^2=z\overline{z}\) in terms of \(a\), \(b\) and \(c\).


Quick Check

Hint: Use the quadratic formula to find \(z\) and show that \(z\overline{z}=c/a.\)


Question 2.8 \(\;\) Find the modulus and argument of \(1+i\) and hence find the real and imaginary parts of \((1+i)^{10}\).


Quick Check

Find \(|1+i|=\sqrt2,\;\;\arg(1+i)=\pi/4\) and \(\Re((1+i)^{10})=0,\;\;\Im((1+i)^{10})=32\).


Week 5 Material

Question 2.9 \(\;\) Find all possible values of

\(\;\;(a)\;\; i^0, \hspace{1cm}\) \(\;\;(b)\;\; i^1, \hspace{1cm}\) \(\;\;(c)\;\; i^i, \hspace{1cm}\) \(\;\;(d)\;\; (1+i)^i, \hspace{1cm}\) \(\;\;(e)^*\;\; (1+i)^{2+i}.\)


Quick Check

\((a)\;\) \(i^0=1\). \(\hspace{1cm}\) \((b)\;\) \(i^1=i\).

\((c)\;\) \(i^i=e^{-\pi/2-2n\pi} \quad\;\;\) for any \(n\in\mathbb{Z}\).

\((d)\;\) \((1+i)^i=e^{-\pi/4-2n\pi+i\ln\sqrt{2}} \quad\;\;\) for any \(n\in\mathbb{Z}\).

\((e)\;\) \((1+i)^{2+i}=2e^{-\pi/4-2n\pi}e^{(\ln{2}+\pi)i/2} \quad\;\;\) for any \(n\in\mathbb{Z}\).


Question 2.10 \(\;\) For each of the following equations, find all complex solutions and plot them on the complex plane.

\(\;\;(a)\;\; z^5-32=0, \hspace{1.7cm}\) \(\;\;(b)\;\; z^5+32=0, \hspace{1.0cm}\) \(\;\;(c)\;\; z^6+8i=0, \hspace{1cm}\)

\(\;\;(d)\;\; z^2+2z+2=0, \hspace{1cm}\) \(\;\;(e)^*\;\; z^6-9z^3+8=0.\)


Quick Check

\((a)\;\) \(z=2e^{2n\pi i/5}=2\left(\cos\dfrac{2n\pi}{5}+i\sin\dfrac{2n\pi}{5}\right)\) for \(n=-2,-1,0,1,2\).

\((b)\;\) \(z=2e^{(2n+1)\pi i/5}= 2\left(\cos\dfrac{(2n+1)\pi}{5}+i\sin\dfrac{(2n+1)\pi}{5}\right)\) for \(n=-2,-1,0,1,2\).

\((c)\;\) \(z=\sqrt{2}e^{(4n-1)\pi i/12}= \sqrt2\left(\cos\dfrac{(4n-1)\pi}{12}+i\sin\dfrac{(4n-1)\pi}{12}\right)\) for \(n=-2,-1,0,1,2\).

\((d)\;\) \(z=-1\pm i\)

\((e)\;\) \(z=e^{2n\pi i/3}, \;2e^{2n\pi i/3} \qquad\text{for $n=-1,0,1$.}\) These six solutions can also be written as \[1,\;\dfrac{-1\pm i\sqrt3}{2}\quad\textrm{and} 2,\; -1\pm i\sqrt3.\]


Question 2.11 \(\;\) Let \(P(z)=a_nz^n+a_{n-1}z^{n-1}+...+a_1z+a_0\) be a polynomial with real coefficients \(a_0,a_1,...,a_n\). If \(P(z)=0\), show that \(P(\overline{z})=0\) as well. In other words, a polynomial with real coefficients has roots which are real or occur in pairs of complex conjugates.


Quick Check

Hint: Take complex conjugates of \(P(z)\).


Question 2.12 \(\;\) Let \(P(z)=z^4-z^3+z^2+2a\) where \(a\) is a real number and suppose that \(1+i\) is a root of \(P(z)\).

\(\;\;(a)\;\) Using the result of the previous question, find a real quadratic factor of \(P(z)\).

\(\;\;(b)\;\) Use \(P(1+i)=0\) to find the value of \(a\).

\(\;\;(c)\;\) Express \(P(z)\) as a product of two real quadratic factors and hence find all of its roots.


Quick Check

\((a)\;\) \((z-1-i)(z-1+i)=z^2-2z+2\) is a factor.

\((b)\;\) \(a=1.\) \(\hspace{1cm}\) \((c)\;\) The four roots are \(1\pm i\), \(\dfrac{-1\pm i\sqrt3}{2}\).


Question 2.13 \(\;\;\) Find all complex solutions to the following equations

\(\;\;(a)\;\; e^z=e, \hspace{1cm}\) \(\;\;(b)\;\; e^z=3, \hspace{1cm}\) \(\;\;(c)\;\; e^z=-3,\hspace{1cm}\) \(\;\;(d)\;\; e^z=i.\)


Quick Check

\((a)\;\) \(z=1+2n\pi i\quad\) for \(n\in\mathbb{Z}\). \(\hspace{1cm}\) \((b)\;\) \(z=\ln{3}+2n\pi i\quad\) for \(n\in\mathbb{Z}\).

\((c)\;\) \(z=\ln{3}+(2n+1)\pi i\quad\) for \(n\in\mathbb{Z}\). \(\hspace{1cm}\) \((d)\;\) \(z=\left(\frac{\pi}{2}+2n\pi\right)i\quad\) for \(n\in\mathbb{Z}\).


Question 2.14 \(\;\) Find the principal values of the logarithms

\(\;\;(a)\;\; \Ln{e},\hspace{1cm}\) \(\;\;(b)\;\; \Ln{3},\hspace{1cm}\) \(\;\;(c)\;\; \Ln(-3),\hspace{1cm}\) \(\;\;(d)\;\; \Ln{i}.\)


Quick Check

\((a)\;\; 1,\hspace{1cm}\) \((b)\;\; \ln{3},\hspace{1cm}\) \((c)\;\; \ln{3}+\pi i,\hspace{1cm}\) \((d)\;\; \frac{\pi}{2}i\).


Question 2.15 \(\;\) Find all complex numbers \(z\) for which

\(\;\;(a)\;\; \cos{z}=2,\hspace{1cm}\) \(\;\;(b)^*\;\; \sin{z}=-1,\hspace{1cm}\) \(\;\;(c)\;\; \cosh{z}=-2.\hspace{1cm}\)


Quick Check

\((a)\;\) \(z=2n\pi-i\ln(2\pm\sqrt3).\) or \(z=2n\pi\pm i\ln(2+\sqrt3)\qquad\text{for $n\in\mathbb{Z}$.}\)

\((b)\;\) \(z=-\frac{\pi}{2}+2n\pi\qquad\text{for $n\in\mathbb{Z}$.}\)

\((c)\;\) \(z=\ln(2\pm\sqrt3)+(2n+1)\pi i\qquad\text{for $n\in\mathbb{Z}$.}\)


Question 2.16 \(\;\) For real \(\theta\), use de Moivre’s theorem to express

\(\;\;(a)\;\; \cos(3\theta)\) as a polynomial in \(\cos\theta,\hspace{1cm}\) \(\;\;(b)\;\; \sin(5\theta)\) as a polynomial in \(\sin\theta\).


Quick Check

\((a)\;\) \(\cos(3\theta)=4\cos^3\theta-3\cos\theta.\)

\((b)\;\) \(\sin(5\theta)=16\sin^5\theta-20\sin^3\theta+5\sin\theta.\)


Question 2.17 \(\;\) Show that \(\cos{4\theta}=8\cos^4\theta-8\cos^2\theta+1\) and deduce that \[\cos\frac{\pi}{8}=\frac{1}{2}\sqrt{2+\sqrt2}.\]


Quick Check

Hint: What are the four solutions of \(8c^4-8c^2+1=0\)? Explain why one of these values must be \(\cos(\pi/8)\) and decide which one.


Question 2.18 \(\;\) For real \(\theta\), use de Moivre’s theorem to show that

\(\;\;(a)\;\; \cos^3\theta=\dfrac{\cos(3\theta)+3\cos\theta}{4}, \hspace{1cm}\) \(\;\;(b)^*\;\; \cos^4\theta=\dfrac{\cos(4\theta)+4\cos(2\theta)+3}{8}.\)


Quick Check

\((a)\;\) Express \(\cos(3\theta)\) in terms of \(\cos\theta\) and rearrange. Alternatively, expand \(\cos^3\theta=\left(\dfrac{e^{i\theta}+e^{-i\theta}}{2}\right)^3\) and recombine.

\((b)\;\) similar but with \(\sin\).


Question 2.19 \(\;\) For real \(\theta\), use de Moivre’s theorem to express

\(\;\;(a)\;\; \sin^3\theta\) as a combination of \(\sin(3\theta)\) and \(\sin\theta\),

\(\;\;(b)\;\; \sin^4\theta\) as a combination of \(\cos(4\theta)\) and \(\cos(2\theta)\).


Quick Check

\((a)\;\) \(\sin^3(\theta)=\dfrac{3\sin\theta-\sin(3\theta)}{4}\), \(\hspace{1cm}\) \((b)\;\) \(\sin^4(\theta)=\dfrac{\cos(4\theta)-4\cos(2\theta)+3}{8}\).


Question 2.20 \(\;\) Given that \[1+z+z^2+z^3+...=\sum_{n=0}^{\infty}z^n=\frac{1}{1-z}\quad\text{for $|z|<1$}\] use de Moivre’s theorem to calculate the following infinite sums for real \(\theta\):

\(\;\;(a)\;\; \displaystyle\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^n\cos(n\theta),\hspace{1cm}\) \(\;\;(b)\;\; \displaystyle\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^n\sin(n\theta).\)


Quick Check

Hint: do both at once by using \(e^{in\theta}=\cos(n\theta)+i\sin(n\theta)\).

Then apply the geometric sum with \(z=\dfrac12e^{i\theta}\) and rewrite in terms of \(\cos\) and \(\sin\). You should find

\((a)\;\) \(\dfrac{4-2\cos\theta}{5-4\cos\theta}\), \(\hspace{1cm}\) \((b)\;\) \(\dfrac{2\sin\theta}{5-4\cos\theta}\).


Question 2.21 \(\;\) Use the definitions \[\cos{z}=\dfrac{e^{iz}+e^{-iz}}{2} \quad\text{and}\quad \sin{z}=\dfrac{e^{iz}-e^{-iz}}{2i}\] to show that

\(\;\;(a)\;\; \sin(z+w)=\sin{z}\cos{w}+\cos{z}\sin{w},\)

\(\;\;(b)\;\; \cos(z+w)=\cos{z}\cos{w}-\sin{z}\sin{w}.\)

In other words, prove the usual double angle formulae hold for all complex \(z\) and \(w\).


Quick Check

Hint: start from the (more complicated) right-hand sides and simplify.


Question 2.22 \(\;\) Recall the hyperbolic functions: \[\cosh{y}=\dfrac{e^y+e^{-y}}{2} \quad\text{and}\quad \sinh{y}=\dfrac{e^y-e^{-y}}{2}.\] Show that for an arbitrary complex number \(z=x+iy\),

\(\;\;(a)\;\; \sin{z}=\sin{x}\cosh{y}+i\cos{x}\sinh{y},\hspace{1cm}\)

\(\;\;(b)\;\; |\sin{z}|=\sqrt{\sin^2{x}+\sinh^2{y}}\).

Find similar formulae for \(\cos{z}\) and \(|\cos{z}|\).


Quick Check

Hint: start from the (more complicated) right-hand sides and simplify.


Week 6 Material

Question 2.23 \(\;\) Suppose the points \(A\), \(B\), \(C\) and \(D\) represent the complex numbers \(z_1\), \(z_2\), \(z_3\) and \(z_4\) respectively, and \(O\) is the origin \(z=0\).

\(\;\;(a)\;\;\) If \(OABC\) is a parallelogram and \(z_1=1+i\) and \(z_2=4+5i\), find \(z_3\).

\(\;\;(b)\;\;\) If \(ABCD\) is a square, find \(z_2\) and \(z_4\) in the cases

\(\hspace{1.5cm}(i)\;\; z_1=2+i\) and \(z_3=6+7i\hspace{1cm}\) \((ii)\;\; z_1=6-2i\) and \(z_3=6i\).


Quick Check

\((a)\;\) \(z_3=3+4i.\)

\((b)\;(i)\;\) \(z_2=7+2i, \; z_4= 1+6i\) and \(\;\;\;\;(ii)\;\) \(z_2=7+5i, \; z_4=-1-i\).


Question 2.24 \(\;\) Three points \(z_1\), \(z_2\) and \(z_3\) form an equilateral triangle in the complex plane. Given that \(z_1=2+i\) and \(z_2=3+i(1+\sqrt{3})\),

\(\;\;(a)\;\;\) Find the modulus and argument of \(z_2-z_1\).

\(\;\;(b)\;\;\) Find the modulus of \(z_3-z_1\).

\(\;\;(c)\;\;\) Find the possible arguments of \(z_3-z_1\).

\(\;\;(d)\;\;\) Hence find the possible values of \(z_3\).


Quick Check

\((a)\;\) \(|z_2-z_1|=2 \quad\text{and}\quad \operatorname{Arg}(z_2-z_1)=\frac{\pi}{3}.\)

\((b)\;\) \(|z_3-z_1|=2\).

\((c)\;\) \(\arg(z_3-z_1)=0 \quad\text{or}\quad 2\pi/3\).

\((d)\;\) \(z_3=4+i\quad\text{or}\quad 1+i(1+\sqrt3)\).


Question 2.25 \(\;\) A regular hexagon in the complex plane has centre \(z_0=3+i\) and one of the vertices at \(z_1=3+3i\). Find the other vertices of the hexagon.


Quick Check

The six vertices are \(3 + 3i,\; 3-i, \; 3\pm\sqrt3,\; 3\pm\sqrt3+2i\).


Question 2.26 \(\;\) Sketch the set of numbers \(z\) in the complex plane satisfying:

\(\;\;(a)\;\;|z|=2,\hspace{3.4cm}\) \(\;\;(b)\;\;|z-2|=|z+2|,\hspace{1.5cm}\) \(\;\;(c)^*\;\;\sqrt{3}\;|z-2|=|z+2|,\)

\(\;\;(d)\;\;|z-2|+|z+2|=6,\hspace{1cm}\) \(\;\;(e)^*\;\;\arg\left(\dfrac{z-2}{z+2}\right)=\dfrac{\pi}{2},\hspace{1cm}\) \(\;\;(f)\;\;\arg\left(\dfrac{z-2}{z+2}\right)=\dfrac{\pi}{4}\).


Quick Check

Hint: Either work geometrically in terms of lengths and angles, or set \(z=x+iy\) and rewrite the conditions in terms of \(x\) and \(y\).


Question 2.27 \(\;\) Find the unique complex number \(z\) satisfying \[|z-1-3i|=|z-1-i|\qquad\text{and}\qquad\Arg(z)=\frac{\pi}{4}.\] (You can do this algebraically, but there is a quick geometric way too.)


Quick Check

You should find \(z=2+2i\).


Question 2.28 \(\;\) Describe the sets of complex numbers such that

\(\;\;(a)\;\;\) \(w=(z-i)/(z-1)\) is a real number,

\(\;\;(b)\;\;\) \(w=(z-i)/(z-1)\) is purely imaginary.

\(\;\;\)(Hint: \(w\) is real exactly when \(w=\overline{w}\) and is purely imaginary when \(w=-\overline{w}\).

\(\;\;\) Use this to find a relationship between \(x=\Re(z)=\dfrac{z+\overline{z}}{2}\) and \(y=\Im(z)=\dfrac{z-\overline{z}}{2i}\).)


Quick Check

This is quite difficult, but can be done using the hint and some careful algebra.


Question 2.29 \(\;\) In a series RLC circuit, the complex impedance \(Z\) depends on the (real-valued) frequency \(\omega\) via the formula \[Z(\omega)=R+i\omega L+\frac{1}{i\omega C}\] where the capacitance \(C\), inductance \(L\) and resistance \(R\) are real constants.

\(\;\;(a)\;\;\) Find, in terms of \(L\) and \(C\), the resonant frequency of the circuit,

\(\qquad\;\,\) i.e. the frequency \(\omega_0\) at which the impedance \(Z(\omega_0)\) has minimal modulus.

\(\;\;(b)\;\;\) Show that \[\frac{Z(\omega)}{Z(\omega_0)}= 1+iQ\left(\frac{\omega}{\omega_0}-\frac{\omega_0}{\omega}\right)\] \(\qquad\;\,\) for some real constant \(Q\) (this is called the ``\(Q\) factor” of the circuit).

\(\;\;(c)\;\;\) Find, in terms of \(\omega_0\) and \(Q\), the values of \(\omega\) for which the ratio in part \((b)\) has modulus \(\sqrt{2}\).

\(\;\;(d)\;\;\) Given that the complex voltage \(\widehat{V}\) and current \(\widehat{I}\) are related by \(\widehat{V}=\widehat{I}Z(\omega)\), find the

\(\qquad\;\,\) phase difference \(\Arg(\widehat{V})-\Arg(\widehat{I})\) in terms of \(Q\), \(\omega\) and \(\omega_0\).


Quick Check

\((a)\;\) \(\omega_0=\dfrac{1}{\sqrt{LC}}\).

\((b)\;\) You should find \(Q=\dfrac{1}{R}\sqrt{\dfrac{L}{C}}\)

\((c)\;\) \(\omega=\dfrac{\omega_0}{2Q}\left(\pm 1\pm\sqrt{1+4Q^2}\right).\)

\((d)\;\) \(\operatorname{Arg}(V)-\operatorname{Arg}(I)=\arctan\left(Q\left(\dfrac{\omega}{\omega_0}-\dfrac{\omega_0}{\omega}\right)\right).\)


Question 2.30 \(\!{}^*\;\) In a particular RLC circuit, the complex impedance \(Z\) satisfies \[Z^{-1}=(R+i\omega L)^{-1}+i\omega C\] where the capacitance \(C\), inductance \(L\) and resistance \(R\) are real constants and \(\omega\) is the (real-valued) frequency. Show that \[|Z|^2=\frac{R^2+\omega^2L^2}{(1-CL\omega^2)^2+C^2R^2\omega^2}\] and \[\Arg(Z)=\arctan\left[\frac{\omega}{R}\Big(L-C(R^2+\omega^2L^2)\Big)\right].\]

(Hint: make use of \(|\alpha/\beta|=|\alpha|/|\beta|\), etc.)


Quick Check

Hint: Use the hint or it’s a mess!