Being combinatorial objects, simplicial complexes can serve as simplified models of smooth geometric spaces. Their combinatorial nature allows explicit computations of their fundamental groups. Fundamental groups are a basic algebraic tool to describe the equivalence of closed paths under continuous deformations. In this project, we aim to obtain a better understanding of the fundamental groups of simplicial complexes and their properties. Another attractive property of simplicial complexes is that they can be endowed with additional geometric structures and become gateways to a much richer world than the classical surfaces and their generalisation to higher dimensions (manifolds). In this project, we aim is to generalize known geometric concepts of curvature into this richer world. Another consequence of the simplicity and versatility of simplicial complexes is their wide use as geometric representations in the fields of industrial design and medical imaging. The better understanding of their mathematical properties will lead to improved processing algorithms that can be used in these applications.
Talks, Conferences and Research Visits |
Preprints and Publications |
GGA Seminars |
Software |
||||||