13 Case Study: The Free Particle

Determining the full time evolution of a free particle wave function, illustrated on a Gaussian.

This lecture is an extended example consisting of a “free particle" moving on a line. This means that the potential \(V(x) = V_0\) is a constant. In this lecture, we assume for simplicity that the potential vanishes \(V_0 = 0\). You might think this is the simplest possible example, but it exhibits a number of important subtleties.

13.1 Step 1: Hamiltonian Eigenfunctions

Once we know the decomposition of an initial Gaussian wave function in terms of energy eigenfunctions, we can compute its time evolution.

The starting point for understanding is to construct an orthonormal basis of eigenfunctions of the Hamiltonian operator \[\hat H = \frac{\hat p^2}{2m} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \, .\] In this case, it is first convenient to first discuss the momentum operator \(\hat p\). This is because an eigenfunction of the momentum operator \(\hat p\) with eigenvalue \(p\) is automatically an eigenfunction of the Hamiltonian operator \(\hat H\) with eigenvalue \(E = p^2/2m\).

The momentum eigenfunctions are solutions to the differential equation \[-i \hbar \frac{\partial }{\partial x} \phi_p(x) = p \phi_p(x) \, .\] The solutions are \[\phi_p(x) = \frac{1}{\sqrt{2\pi \hbar}} e^{i p x/\hbar}\] for any \(p \in \mathbb{R}\). The momentum operator therefore has a continuous spectrum and correspondingly the normalisation is chosen so that \[\begin{aligned} \langle \phi_p , \phi_{p'}\rangle & = \int^\infty_{-\infty} \overline{\phi_p(x)} \phi_{p'}(x) {\rm d}x \\ & = \frac{1}{2\pi \hbar}\int^{\infty}_{-\infty} e^{-i(p-p')x/\hbar} {\rm d}x \\ & = \delta(p-p') \, . \end{aligned}\] The spectrum of the momentum operator is also non-degenerate: there is a unique eigenfunction \(\phi_p(x)\) for each eigenvalue \(p \in \mathbb{R}\).

The same wave functions are also Hamiltonian eigenfunctions \[\hat H \cdot \phi_p(x) = - \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \phi_p(x) = E_p \phi_p(x)\] where \[E_p = \frac{p^2}{2m} \, .\] However, the spectrum of the Hamiltonian is degenerate since \(\phi_p(x)\) and \(\phi_{-p}(x)\) have the same energy since \(E_p = E_{-p}\). This is a consequence of “parity" symmetry \(x \mapsto -x\) that sends \[\phi_p(x) \mapsto \phi_p(-x) = \phi_{-p}(x) \, ,\] while leaving the Hamiltonian operator \(\hat H\) invariant. Nevertheless, the wave functions \(\phi_p(x)\) can be taken as an orthonormal basis of Hamiltonian eigenfunctions.

13.2 Step 2: Stationary Solutions

We can immediately promote the Hamiltonian eigenfunctions \(\phi_p(x)\) to stationary solutions of Schrödinger’s equation, \[\begin{aligned} \psi_p(x,t) & = \phi_p(x) e^{- i E_pt / \hbar} \\ & = \frac{1}{\sqrt{2\pi \hbar}} e^{i (p x- E_pt)/ \hbar} \, . \end{aligned}\] These stationary wave functions correspond to plane waves. In particular, \(\psi_p(x,t)\) and \(\psi_{-p}(x,t)\) are plane waves with equal magnitude of momentum in opposite directions and therefore equal energy.

13.3 Step 3: Time Evolution of Wave function

We now return to the problem at hand: how to determine the solution of Schrödinger’s equation \(\psi(x,t)\) given an initial wave function \(\psi(x,0)\).

We expand \(\psi(x,0)\) as a linear combination of the Hamiltonian eigenfunctions. In this case, the spectrum of the Hamiltonian operator is continuous and the expansion becomes an integral \[\begin{aligned} \psi(x,0) & = \int^\infty_{-\infty} {\rm d}p \, c(p) \, \phi_p(x) \\ & = \frac{1}{\sqrt{2\pi \hbar}}\int^\infty_{-\infty} {\rm d}p \, c(p) \, e^{ipx/\hbar} \, . \end{aligned}\] The coefficients function \(c(p)\) is computed via the inverse relation, \[c(p) = \frac{1}{\sqrt{2\pi\hbar}}\int^\infty_{-\infty} {\rm d}x \, \psi(x,0) \, e^{-ipx/\hbar} \, .\] This is of course the Fourier transform between the initial wave function \(\psi(x,0)\) and the initial momentum space wave function, \(c(p) = \widetilde\psi(p,0)\)

To compute the wave function at later times, we promote the Hamiltonian eigenfunctions \(\phi_p(x)\) to stationary wave functions, \[\begin{aligned} \psi(x,t) & =\int^\infty_{-\infty} {\rm d}p \, c(p) \psi_p(x,t) \\ & = \frac{1}{\sqrt{2\pi\hbar}}\int^\infty_{-\infty} {\rm d}p \, c(p) \, e^{ipx/\hbar} e^{-ip^2t/2m\hbar} \, . \end{aligned}\] We can express this in terms of the initial wave function \(\psi(x,0)\) by substituting in the inverse Fourier transform for the coefficients \(c(p)\) and interchanging the order of integration, \[\begin{aligned} \psi(x,t) & = \frac{1}{2\pi\hbar}\int^\infty_{-\infty} {\rm d}p \, \left( \int^\infty_{-\infty} {\rm d}x' \, \psi(x',0) \, e^{-ipx'/\hbar} \right) \, e^{ipx/\hbar} e^{-ip^2t/2m\hbar} \\ & = \frac{1}{2\pi\hbar} \int^\infty_{-\infty} {\rm d}x'\psi(x',0) \int^\infty_{-\infty} {\rm d}p \, e^{ip(x-x')/\hbar}e^{-ip^2t/2m\hbar} \, . \end{aligned}\]

The integral over momentum can now be computed using the standard Gaussian integral formula \[\int^\infty_{-\infty} \, {\rm d}y \, e^{-\alpha y^2+ \beta y} = \sqrt{\frac{\pi}{\alpha}} \, e^{\beta^2/4\alpha} \, .\] With the substitution \[\begin{aligned} \alpha = \frac{it}{2m\hbar} \qquad \beta = i\frac{(x-x')}{\hbar} \, , \end{aligned}\] we find \[\int^\infty_{-\infty} {\rm d}p \, e^{ip(x-x')/\hbar}e^{-ip^2t/2m\hbar} =\left(\frac{2\pi \hbar m}{i t}\right)^{1/2}e^{im(x-x')^2 / 2\hbar t} \, .\]

The propagator allows us to compute, by doing a single integral, the wave function at arbitrary times if we know the wave function at an initial time.
We therefore have \[\begin{aligned} \psi(x,t) = \left(\frac{m}{2\pi\hbar i t}\right)^{1/2} \int^\infty_{-\infty} {\rm d}x' \, \psi(x',0) \, \exp\left( \frac{im(x-x')^2}{2\hbar t}\right) \, , \end{aligned}\] which allows us to compute \(\psi(x,t)\) from the initial wave function \(\psi(x,0)\). The object \[G(x,x';t) = \left(\frac{m}{2\pi\hbar i t}\right)^{1/2} \exp\left( \frac{im(x-x')^2}{2\hbar t}\right)\] is sometimes called the “propagator”.

13.4 Example: Time-Evolution of Gaussian

Gaussian wave functions spread in time, but preserve their Gaussian nature. They also preserve their minimal spread.

Consider an initial Gaussian wave function \[\psi(x,0) = C e^{ip_0x/\hbar}e^{-x^2/4\Delta^2}\] with normalisation \(C = (2\pi\Delta^2)^{-1/4}\). The initial probability distribution is \[\begin{aligned} P(x,0) & =|\psi(x,0)|^2 \\ & = \frac{1}{\sqrt{2\pi\Delta^2}} e^{-x^2/2\Delta^2} \end{aligned}\] The initial wave function has the characteristic properties \[\begin{aligned} \langle x \rangle & = 0 \qquad && \Delta x = \Delta \\ \langle p\rangle & = p_0 \qquad && \Delta p = \frac{\hbar}{2\Delta} \, . \end{aligned}\] In particular, Heisenberg’s uncertainty principle is saturated, \(\Delta x \Delta p = \hbar/2\).

Probability density for a Gaussian wave packet with width \Delta.

The wave function at later times is \[\begin{aligned} \psi(x,t) & = \left(\frac{m}{2\pi\hbar i t}\right)^{1/2} \int^\infty_{-\infty} {\rm d}x' \, \exp\left( \frac{im(x-x')^2}{2\hbar t}\right) \, \psi(x',0) \\ & = C \left(\frac{m}{2\pi\hbar i t}\right)^{1/2} \int^\infty_{-\infty} {\rm d}x' \, \exp\left( \frac{im(x-x')^2}{2\hbar t}\right) \, e^{ip_0x'/\hbar}e^{-x'^2/4\Delta^2} \, . \end{aligned}\] This can be evaluated by performing another Gaussian integral with parameters \[\begin{aligned} \alpha & =\frac{m}{2i\hbar t}\left( 1 + \frac{i\hbar t}{2m\Delta^2} \right)\\ \beta & = -\frac{im}{\hbar t}\left( x - \frac{p_0t}{m} \right) \, . \end{aligned}\] Notice that \(\mathrm{Re}(\alpha)>0\) so the Gaussian integral converges and there is no subtlety in computing it. After some simplification, the final result for the wave function at later times is \[\psi(x,t) = \left[ 2\pi\Delta^2\left(1+\frac{i\hbar t}{2m\Delta^2}\right) \right]^{1/4} \exp\left[ ip_0\left(x-\frac{p_0t}{2m}\right)\right] \exp\left[ \frac{-(x-p_0t/m)^2}{4\Delta^2(1+i\hbar t / 2m\Delta^2)} \right] \, .\] The probability distribution is particularly simple, \[P(x,t) = \frac{1}{\sqrt{2\pi\Delta(t)^2}} \exp\left[ -\frac{x(t)^2}{4\Delta(t)^2} \right]\] where \[x(t) = x - \frac{p_0t}{m} \qquad \Delta(t) = \Delta\sqrt{1+\frac{\hbar^2t^2}{4m^2\Delta^4}} \, .\] This is a time-dependent Gaussian characterised by \[\begin{aligned} \langle x \rangle & = \frac{p_0}{m} t \qquad && \Delta x = \Delta(t) \\ \langle p\rangle & = p_0 \qquad && \Delta p = \frac{\hbar}{2\Delta(t)} \end{aligned}\]

Timea-evolution of a free Gaussian wave packet with non-zero momentum \(p_0\). Note how the wave packet width \(\Delta\) increases in size over time.
Probability density for a moving Gaussian wave packet with width \Delta and momentum p_0.

13.5 Problems

  1. Time evolution of a free particle:

    Consider a free particle with initial wavefunction \(\psi(x,0)\).

    1. Assuming all relevant integrals converge, show that \[\psi(x,t) = \left( \frac{m}{2\pi i \hbar t} \right)^{1/2} \int_{-\infty}^\infty {dx'} \exp\left( \frac{im}{2\hbar t}(x-x')^2\right) \psi(x',0)\] is a solution of Schrödinger’s equation for a free particle, \[i \hbar \frac{\partial}{\partial t}\psi(x,t) = - \frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t)\, .\]

    2. Consider the initial wavefunction \[\psi(x,0) = \begin{cases} C & \quad \mathrm{if} -a < x < a \\ 0 & \quad \mathrm{else} \end{cases}\] where \(C\) is a normalization constant you should determine. Write down an integral for the wavefunction \(\psi(x,t)\) at later times.

    Solution

    1. We compute both sides of Schrödinger’s equation by differentiating under the integral and compare.

      First computing derivatives with respect to \(x\): \[\begin{aligned} \partial_x\psi(x,t) & = \sqrt{ \frac{m}{2\pi i \hbar t} } \int_{-\infty}^\infty dx' \, \partial_x \exp\left( \frac{im}{2\hbar t}(x-x')^2\right) \psi(x',0) \\ \nonumber & = \sqrt{ \frac{m}{2\pi i \hbar t} } \int_{-\infty}^\infty dx' \, \frac{im}{\hbar t}(x-x') \exp\left( \frac{im}{2\hbar t}(x-x')^2\right) \psi(x',0) \end{aligned}\] \[\begin{aligned} \partial^2_x\psi(x,t) & = \sqrt{ \frac{m}{2\pi i \hbar t} } \int_{-\infty}^\infty dx' \, \left[ \frac{im}{\hbar t} + \left( \frac{im}{\hbar t}\right)^2(x-x')^2 \right] \exp\left( \frac{im}{2\hbar t}(x-x')^2\right) \psi(x',0) \\ \nonumber \end{aligned}\] and hence \[-\frac{\hbar^2}{2m} \partial^2_x\psi(x,t) = \sqrt{ \frac{m}{2\pi i \hbar t} } \int_{-\infty}^\infty dx' \, \left[ -\frac{i\hbar}{2t} +\frac{m}{2 t^2}(x-x')^2 \right] \exp\left( \frac{im}{2\hbar t}(x-x')^2\right) \psi(x',0)\] Second computing the derivative with respect to \(t\): \[\begin{aligned} \partial_t \psi(x,t) & = \partial_t\sqrt{ \frac{m}{2\pi i \hbar t} } \int_{-\infty}^\infty {dx'} \exp\left( \frac{im}{2\hbar t}(x-x')^2\right) \psi(x',0) \\ \nonumber & \quad + \sqrt{ \frac{m}{2\pi i \hbar t} } \int_{-\infty}^\infty {dx'} \,\partial_t\exp\left( \frac{im}{2\hbar t}(x-x')^2\right) \psi(x',0) \\ & = \sqrt{ \frac{m}{2\pi i \hbar t} } \int_{-\infty}^\infty {dx'} \, \left[ -\frac{1}{2t} - \frac{im}{2\hbar t^2}(x-x')^2 \right] \exp\left( \frac{im}{2\hbar t}(x-x')^2 \right) \psi(x',0) \, , \end{aligned}\] and hence \[i\hbar \partial_t \psi(x,t) = \sqrt{ \frac{m}{2\pi i \hbar t} } \int_{-\infty}^\infty {dx'} \, \left[ -\frac{i\hbar}{2t} + \frac{m}{2 t^2}(x-x')^2 \right] \exp\left( \frac{im}{2\hbar t}(x-x')^2 \right) \psi(x',0)\] We therefore see explicitly that \[i \hbar \partial_t \psi(x,t) = -\frac{\hbar^2}{2m}\partial_x\psi(x,t) \, .\]

    2. The normalization constant is \(C = 1/\sqrt{2a}\).

      The wavefunction at \(t>0\) is \[\psi(x,t) = \left( \frac{m}{4\pi i \hbar a t} \right)^{1/2} \int_{-a}^a {dx'} \exp\left( \frac{im}{2\hbar t}(x-x')^2\right) \, .\] You are not expected to know how to compute this integral.

  2. Numerical wave packets:

    In the notebook linked in the margin, you will find some basic Python code to numerically solve the Schrödinger equation. It is used to compute the time-evolution of a Gaussian wave packet, based on the discretisation scheme \[\begin{gathered} \psi(x,t + {\rm d}t) = \psi(x, t-{\rm d}t) \\[1ex] + i {\rm d}t \Big[ \psi(x-{\rm d}x, t) + \psi(x+{\rm d}x, t) - 2 \big(1 + V(x)\big) \psi(x,t) \Big]\,. \end{gathered}\] For more information on this, see section 3.3 of Schroeder’s book.

    Sample notebook to numerically evolve the Schrödinger equation.

    Use this code to verify that width of the Gaussian wave function spreads as \[\Delta(t) = \Delta\sqrt{1+\frac{\hbar^2t^2}{4m^2\Delta^4}} \, ,\] as we derived analytically.

  3. Degenerate or non-degenerate?:

    In an earlier chapter we have argued that the spectrum of the Hamiltonian operator on the real line is non-degenerate. However, the present chapter starts by arguing that there are two wave functions for every energy eigenvalue. Which assumption in that proof of non-degeneracy does not hold in the present chapter?