next up previous contents index
Next: Example Up: Belief comparison diagrams Previous: Overview

Producing the diagram

 
tex2html_wrap_inline33790 tex2html_wrap_inline33790 Syntax

  1. BD>cdiag : B, tex2html_wrap_inline37528 , tex2html_wrap_inline38742 , tex2html_wrap_inline38744 , tex2html_wrap_inline38746 , tex2html_wrap_inline38748 , tex2html_wrap_inline38750 , tex2html_wrap_inline38752 , tex2html_wrap_inline38754 , tex2html_wrap_inline38756 , tex2html_wrap_inline38758 , tex2html_wrap_inline38760 , tex2html_wrap_inline38762 , tex2html_wrap_inline38764 tex2html_wrap_inline33712

  2. BD>cdiag : B, 1, tex2html_wrap_inline38742 , tex2html_wrap_inline38744 , tex2html_wrap_inline38746 , tex2html_wrap_inline38748 , tex2html_wrap_inline38750 , tex2html_wrap_inline38752 tex2html_wrap_inline33712

where tex2html_wrap_inline34520 is the name of a base or element, tex2html_wrap_inline36432 is an integer, and tex2html_wrap_inline38730 are real numbers.

tex2html_wrap_inline33806 tex2html_wrap_inline33806

 

The CDIAG:  command is used to construct the comparison diagram. Note that the GCLEAR:  command can be used to clear the graphics screen. Furthermore, text can be written to the screen by using the GTEXT:  command. Refer to the cdscaler  and cdradius  controls for changing the relative plotted positions of the observed eigenvectors and the size of the circles drawn to mark them.

All the features summarised on the diagram must be supplied directly: the command carries out no further adjustments of belief constructions. When the base B consists of a single element, a shorter version of the command is required. For both, B is the name of the collection being adjusted. The base B is represented by a node whose coordinates and so forth must have been defined beforehand by issuing an appropriate NODE:  or GRID:  or GRID0:  command.

The number of elements in the base should be given as tex2html_wrap_inline36432 . The remaining numbers supplied are the eigenvalues and observed eigenvectors as follows.

For each case above, by (0 or 1) we mean the normalised variance with respect to the denominator variance matrix. The required value will be unity except for pathological cases.



David Wooff
Wed Oct 21 15:14:31 BST 1998