
Answers to Preimages and Equivalence
Relations Problems

Question 1 We have

f−1({−1}) = ∅,

f−1({0}) = {(0, 0, 0)},

f−1({1}) = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1},

f−1([1, 2]) = {(x, y, z) ∈ R3 | 1 ≤ x2 + y2 + z2 ≤ 2}.

This means that f−1({−1}) is the empty set, f−1({0}) is the set containing
just the origin, and f−1({1}) is the Euclidean sphere around the origin of
radius 1. Finally, f−1([1, 2]) is a closed Euclidean annulus, centered at the
origin, with inner radius 1 and outer radius 2.

Question 2 The graph of f(x) looks as follows:

We have

f−1([0, 1)) = {x ∈ [0, 4] | 0 ≤ sin(πx) < 1}

=

[

0,
1

2

)

∪

(

1

2
, 1

]

∪

[

2,
5

2

)

∪

(

5

2
, 3

]

∪ {4}.



Question 3

(a) Let x ∈ f−1(Y1 ∩ Y2). This is equivalent to f(x) ∈ Y1 ∩ Y2, which is
equivalent to ”f(x) ∈ Y1 and f(x) ∈ Y2”. This, in turn, is equivalent to
”x ∈ f−1(Y1) and x ∈ f−1(Y2), which is equivalent to ”x ∈ f−1(Y1) ∩
f−1(Y2). Here, we proved in one go that every element of one set is
also an element of the other set, and vice versa.

(b) There are manifold choices to establish this, for example X1 := [−2, 0]
and X2 := [0, 2]. Then

f(X1 ∩X2) = f({0}) = {0}

and

f(X1) ∩ f(X2) = f([−2, 0]) ∩ f([0, 2]) = [0, 4] ∩ [0, 4] = [0, 4],

that is f(X1 ∩ x2) 6= f(X1) ∩ f(X2).

Question 4

(a) Let x, x′ ∈ X . Assume that g◦f(x) = g◦f(x′), i.e. g(f(x)) = g(f(x′)).
Since g is injective, this implies that f(x) = f(x′). Since f is injective,
this implies that x = x′. This shows that g ◦ f is injective.

(b) Let z ∈ Z. Since g is surjective, there exists y ∈ Y such that z = g(y).
Since f is surjective, there exists x ∈ X such that y = f(x). This
shows that g ◦ f is surjective.

(c) Let f, g be both bijective. Then (a) and (b) imply that g ◦ f : X → Z

is also bijective. In order to show (g ◦ f)−1 = f−1 ◦ g−1, we need to
show that

(f−1 ◦ g−1) ◦ (g ◦ f)(x) = x

for all x ∈ X . Since composition of functions is associative, we have

(f−1 ◦ g−1) ◦ (g ◦ f)(x) = f−1 ◦ (g−1 ◦ g) ◦ f(x) =

f−1 ◦ idY ◦ f(x) = f−1 ◦ f(x) = idX(x) = x,

where idX : X → X and idY : Y → Y denote the identities on X and
Y , respectively.



Question 5

(a) Transitivity is violated, since 1 ∼ 0 and 0 ∼ 2, but 1 6∼ 2.

(b) Reflexivity, Symmetry and Transitivity translate into 0 ∈ Q, a ∈ Q ⇒
−a ∈ Q and a, b ∈ Q ⇒ a + b ∈ Q. We explain this in the case of
Transitivity: If x ∼ y and y ∼ z we have x− y, y− z ∈ Q. This implies
x− z = (x− y) + (y − z) ∈ Q, i.e., x ∼ z.

(c) Note that (x, y) ∼ (x′, y′) if x2 − y2 = (x′)2 − (y′)2. Therefore, the
equivalence classes of this equivalence relation are the preimages of
f(x, y) = x2 − y2.

(d) Reflexivity is violated, since a nonzero vector (x, y) 6= (0, 0) is obviously
not orthogonal to itself.

(e) Transitivity is violated. Let v0 = 0 ∈ Rn. Then we have for any two
vectors v, w ∈ Rn: v0 ∼ v and v0 ∼ w. Transitivity would lead to
v ∼ w, but there are obviously two non-zero vectors in Rn, n ≥ 2,
which are not linearly dependent.

(f) Reflexivity is satisfied with X = IDn. We conclude Symmetry from
the fact that A = XBX−1 implies B = X−1A(X−1)−1. Finally, let us
check Transitivity: Assume that A ∼ B and B ∼ C. Then we can
find invertible matrices X, Y such that A = XBX−1 and B = Y CY −1.
Then, we have

A = XBX−1 = XY CY −1X−1 = (XY )C(XY )−1,

i.e., A ∼ C, since XY is then also invertible.

(g) Reflexivity follows that a trivial bijection is given by the identity map
IdX : X → X . Symmetry follows from the fact that if f : X → Y

is bijective, then f−1 : Y → X is also bijective. Finally, let us check
Transitivity: Assume that X ∼ Y and Y ∼ Z. Then there exist
bijective maps f : X → Y and g : Y → Z. By Question 4(c), we know
that then g ◦ f : X → Z is also bijective, i.e., X ∼ Z.

(h) We obviously have
∫

1

0
f(x)− f(x)dx = 0, so f ∼ f , confirming Reflex-

ivity. Now let f ∼ g. Then we also have

0 = −

∫

1

0

f(x)− g(x)dx =

∫

1

0

g(x)− f(x)dx,



i.e., g ∼ f , proving Symmetry. Now, assume that f ∼ g and g ∼ h,
i.e.,

0 =

∫

1

0

f(x)− g(x)dx =

∫

1

0

g(x)− h(x)dx.

This implies that

∫

1

0

f(x)−h(x)dx =

∫

1

0

f(x)−g(x)dx+

∫

1

0

g(x)−h(x)dx = 0+0 = 0,

i.e., f ∼ h, proving Transitivity.

Question 6 We have Reflexivity (a, b) ∼ (a, b) because of ab = ab.
Symmetry: Let (a, b) ∼ (c, d), i.e., ad = bc. Then we also have cb = da,
i.e. (c, d) ∼ (a, b). Finally, let us check Transitivity: Assume that (a, b) ∼
(c, d), i.e., ad = bc and (c, d) ∼ (e, f), i.e., cf = de. This implies that
adf = bcf = bde and, since d ∈ N, af = be, i.e., (a, b) ∼ (e, f). Another way
to check transitivity is to see that (a, b) ∼ (c, d) if a

b
= c

d
. So (a, b) ∼ (c, d)

and (c, d) ∼ (e, f) translate into a
b
= c

d
and c

d
= e

f
, which obviously implies

a
b
= e

f
, i.e., (a, b) ∼ (e, f). To check that

[a, b]⊗ [c, d] := [ac, ad− bc] (1)

is a well-defined operation means to check that this definition does not depend
of the representatives of the equivalence relations. Assume that [a, b] = [a′, b′]
and [c, d] = [c′, d′], i.e., ab′ = a′b and cd′ = c′d. We just need to show that
that then [ac, ad − bc] = [a′c′, a′d′ − b′c′], i.e., ac(a′d′ − b′c′) = a′c′(ad − bc).
This follows from

ac(a′d′ − b′c′) = aa′cd′ − ab′cc′ = aa′c′d− a′bcc′ = a′c′(ad− bc).

Another way to see the well-definedness is to observe that if we identify [a, b]
with b

a
, then [a, b]⊗ [c, d] translates into − b

a
+ d

c
= ad−bc

ac
, which is well defined

and independent of the representation of the involved rational numbers.

Question 7 We have p(x) ∼ p(x) since the trivial polynomial is divisible
by x2 + 1 (Reflexivity). Symmetry follows from the obvious fact that if
p(x)−q(x) is divisible by x2+1, then so is q(x)−p(x). Finally, if p(x) ∼ q(x)
and q(x) ∼ r(x), then p(x)−q(x) = a(x)(x2+1) and q(x)−r(x) = b(x)(x2+1),
which implies

p(x)− r(x) = (p(x)− q(x)) + (q(x)− r(x)) = (a(x)− b(x))(x2 + 1),

i.e., p(x) ∼ r(x). This shows Transitivity.



(a) We have

(x2 + 7)(x− 3) = x3 − 3x2 + 7x− 21 = (x2 + 1)(x− 3) + 6x− 18.

This shows taht (x2 + 7)(x− 3)− (6x− 18) is divisible by x2 + 1, i.e.,
(x2 + 7)(x− 3) ∼ 6x− 18, i.e., [(x2 + 7)(x− 3)] = [6x− 18].

(b) Assume that we have p(x) = anx
n + · · · + a1x + a0 with n ≥ 2 and

an 6= 0. Then we can write

p(x) = p0(x) =

(x2+1)anx
n−2+an−1x

n−1+(an−2−1)xn−2+an−3x
n−3+ · · ·+a1x+a0.

This shows that [p0(x)] = [p1(x)], setting

p1(x) = an−1x
n−1 + (an−2 − 1)xn−2 + an−3x

n−3 + · · ·+ a1x+ a0,

and p1(x) has a strictly lower degree than p0(x). We can continue
with this reduction process until we end up with a polynomial pk(x) =
b1x+ b0 of degree at most one such that [p0(x)] = [pk(x)]. This shows
that every equivalence class [p(x)] has a representative of the form
b1x+ b2 with b1, b2 ∈ R.

(c) Note that a non-trivial linear real polynomial ax+ b is not divisible by
the quadratic polynomial x2 + 1. This shows that [ax + b] 6= [a′x+ b′]
if (a, b) 6= (a′, b′). This fact, together with (b), imply that the map

[ax+ b] 7→ ai+ b

is a bijection between the equivalence classes of R[x] and the set of
complex numbers C. Moreover, we have

(ax+b)(cx+d) = acx2+(ad+bc)x+bd = ac(x2+1)+(ad+bc)x+(bd−ac),

i.e.,

[(ax+ b)(cx+ d)] = [(ad+ bc)x+ (bd− ac)] 7→

(ad+ bc)i+ (bd− ac) = (ai+ b)(ci+ d).


