Answers to Preimages and Equivalence Relations Problems

Question 1 We have

$$\begin{array}{rcl} f^{-1}(\{-1\}) &=& \emptyset, \\ f^{-1}(\{0\}) &=& \{(0,0,0)\}, \\ f^{-1}(\{1\}) &=& \{(x,y,z)\in \mathbb{R}^3 \mid x^2+y^2+z^2=1\}, \\ f^{-1}([1,2]) &=& \{(x,y,z)\in \mathbb{R}^3 \mid 1\leq x^2+y^2+z^2\leq 2\}. \end{array}$$

This means that $f^{-1}(\{-1\})$ is the empty set, $f^{-1}(\{0\})$ is the set containing just the origin, and $f^{-1}(\{1\})$ is the Euclidean sphere around the origin of radius 1. Finally, $f^{-1}([1,2])$ is a closed Euclidean annulus, centered at the origin, with inner radius 1 and outer radius 2.

Question 2 The graph of f(x) looks as follows:

We have

$$f^{-1}([0,1)) = \{x \in [0,4] \mid 0 \le \sin(\pi x) < 1\} \\ = \left[0,\frac{1}{2}\right] \cup \left(\frac{1}{2},1\right] \cup \left[2,\frac{5}{2}\right] \cup \left(\frac{5}{2},3\right] \cup \{4\}.$$

Question 3

- (a) Let $x \in f^{-1}(Y_1 \cap Y_2)$. This is equivalent to $f(x) \in Y_1 \cap Y_2$, which is equivalent to " $f(x) \in Y_1$ and $f(x) \in Y_2$ ". This, in turn, is equivalent to " $x \in f^{-1}(Y_1)$ and $x \in f^{-1}(Y_2)$, which is equivalent to " $x \in f^{-1}(Y_1) \cap f^{-1}(Y_2)$. Here, we proved in one go that every element of one set is also an element of the other set, and vice versa.
- (b) There are manifold choices to establish this, for example $X_1 := [-2, 0]$ and $X_2 := [0, 2]$. Then

$$f(X_1 \cap X_2) = f(\{0\}) = \{0\}$$

and

$$f(X_1) \cap f(X_2) = f([-2,0]) \cap f([0,2]) = [0,4] \cap [0,4] = [0,4],$$

that is $f(X_1 \cap x_2) \neq f(X_1) \cap f(X_2)$.

Question 4

- (a) Let $x, x' \in X$. Assume that $g \circ f(x) = g \circ f(x')$, i.e. g(f(x)) = g(f(x')). Since g is injective, this implies that f(x) = f(x'). Since f is injective, this implies that x = x'. This shows that $g \circ f$ is injective.
- (b) Let $z \in Z$. Since g is surjective, there exists $y \in Y$ such that z = g(y). Since f is surjective, there exists $x \in X$ such that y = f(x). This shows that $g \circ f$ is surjective.
- (c) Let f, g be both bijective. Then (a) and (b) imply that $g \circ f : X \to Z$ is also bijective. In order to show $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$, we need to show that

$$(f^{-1} \circ g^{-1}) \circ (g \circ f)(x) = x$$

for all $x \in X$. Since composition of functions is associative, we have

$$(f^{-1} \circ g^{-1}) \circ (g \circ f)(x) = f^{-1} \circ (g^{-1} \circ g) \circ f(x) = f^{-1} \circ \operatorname{id}_Y \circ f(x) = f^{-1} \circ f(x) = \operatorname{id}_X(x) = x,$$

where $id_X : X \to X$ and $id_Y : Y \to Y$ denote the identities on X and Y, respectively.

Question 5

- (a) Transitivity is violated, since $1 \sim 0$ and $0 \sim 2$, but $1 \neq 2$.
- (b) Reflexivity, Symmetry and Transitivity translate into $0 \in \mathbb{Q}$, $a \in \mathbb{Q} \Rightarrow -a \in \mathbb{Q}$ and $a, b \in \mathbb{Q} \Rightarrow a + b \in \mathbb{Q}$. We explain this in the case of Transitivity: If $x \sim y$ and $y \sim z$ we have $x y, y z \in \mathbb{Q}$. This implies $x z = (x y) + (y z) \in \mathbb{Q}$, i.e., $x \sim z$.
- (c) Note that $(x, y) \sim (x', y')$ if $x^2 y^2 = (x')^2 (y')^2$. Therefore, the equivalence classes of this equivalence relation are the preimages of $f(x, y) = x^2 y^2$.
- (d) Reflexivity is violated, since a nonzero vector $(x, y) \neq (0, 0)$ is obviously not orthogonal to itself.
- (e) Transitivity is violated. Let $v_0 = 0 \in \mathbb{R}^n$. Then we have for any two vectors $v, w \in \mathbb{R}^n$: $v_0 \sim v$ and $v_0 \sim w$. Transitivity would lead to $v \sim w$, but there are obviously two non-zero vectors in \mathbb{R}^n , $n \geq 2$, which are not linearly dependent.
- (f) Reflexivity is satisfied with $X = ID_n$. We conclude Symmetry from the fact that $A = XBX^{-1}$ implies $B = X^{-1}A(X^{-1})^{-1}$. Finally, let us check Transitivity: Assume that $A \sim B$ and $B \sim C$. Then we can find invertible matrices X, Y such that $A = XBX^{-1}$ and $B = YCY^{-1}$. Then, we have

$$A = XBX^{-1} = XYCY^{-1}X^{-1} = (XY)C(XY)^{-1},$$

i.e., $A \sim C$, since XY is then also invertible.

- (g) Reflexivity follows that a trivial bijection is given by the identity map $\operatorname{Id}_X : X \to X$. Symmetry follows from the fact that if $f : X \to Y$ is bijective, then $f^{-1} : Y \to X$ is also bijective. Finally, let us check Transitivity: Assume that $X \sim Y$ and $Y \sim Z$. Then there exist bijective maps $f : X \to Y$ and $g : Y \to Z$. By Question 4(c), we know that then $g \circ f : X \to Z$ is also bijective, i.e., $X \sim Z$.
- (h) We obviously have $\int_0^1 f(x) f(x)dx = 0$, so $f \sim f$, confirming Reflexivity. Now let $f \sim g$. Then we also have

$$0 = -\int_0^1 f(x) - g(x)dx = \int_0^1 g(x) - f(x)dx,$$

i.e., $g \sim f$, proving Symmetry. Now, assume that $f \sim g$ and $g \sim h$, i.e.,

$$0 = \int_0^1 f(x) - g(x)dx = \int_0^1 g(x) - h(x)dx$$

This implies that

$$\int_0^1 f(x) - h(x)dx = \int_0^1 f(x) - g(x)dx + \int_0^1 g(x) - h(x)dx = 0 + 0 = 0,$$

i.e., $f \sim h$, proving Transitivity.

Question 6 We have Reflexivity $(a, b) \sim (a, b)$ because of ab = ab. Symmetry: Let $(a, b) \sim (c, d)$, i.e., ad = bc. Then we also have cb = da, i.e. $(c, d) \sim (a, b)$. Finally, let us check Transitivity: Assume that $(a, b) \sim (c, d)$, i.e., ad = bc and $(c, d) \sim (e, f)$, i.e., cf = de. This implies that adf = bcf = bde and, since $d \in \mathbb{N}$, af = be, i.e., $(a, b) \sim (e, f)$. Another way to check transitivity is to see that $(a, b) \sim (c, d)$ if $\frac{a}{b} = \frac{c}{d}$. So $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$ translate into $\frac{a}{b} = \frac{c}{d}$ and $\frac{c}{d} = \frac{e}{f}$, which obviously implies $\frac{a}{b} = \frac{e}{f}$, i.e., $(a, b) \sim (e, f)$. To check that

$$[a,b] \otimes [c,d] := [ac,ad-bc] \tag{1}$$

is a well-defined operation means to check that this definition does not depend of the representatives of the equivalence relations. Assume that [a, b] = [a', b']and [c, d] = [c', d'], i.e., ab' = a'b and cd' = c'd. We just need to show that that then [ac, ad - bc] = [a'c', a'd' - b'c'], i.e., ac(a'd' - b'c') = a'c'(ad - bc). This follows from

$$ac(a'd'-b'c') = aa'cd'-ab'cc' = aa'c'd-a'bcc' = a'c'(ad-bc).$$

Another way to see the well-definedness is to observe that if we identify [a, b] with $\frac{b}{a}$, then $[a, b] \otimes [c, d]$ translates into $-\frac{b}{a} + \frac{d}{c} = \frac{ad-bc}{ac}$, which is well defined and independent of the representation of the involved rational numbers.

Question 7 We have $p(x) \sim p(x)$ since the trivial polynomial is divisible by $x^2 + 1$ (Reflexivity). Symmetry follows from the obvious fact that if p(x) - q(x) is divisible by $x^2 + 1$, then so is q(x) - p(x). Finally, if $p(x) \sim q(x)$ and $q(x) \sim r(x)$, then $p(x) - q(x) = a(x)(x^2 + 1)$ and $q(x) - r(x) = b(x)(x^2 + 1)$, which implies

$$p(x) - r(x) = (p(x) - q(x)) + (q(x) - r(x)) = (a(x) - b(x))(x^{2} + 1),$$

i.e., $p(x) \sim r(x)$. This shows Transitivity.

(a) We have

$$(x^{2}+7)(x-3) = x^{3} - 3x^{2} + 7x - 21 = (x^{2}+1)(x-3) + 6x - 18.$$

This shows taht $(x^2 + 7)(x - 3) - (6x - 18)$ is divisible by $x^2 + 1$, i.e., $(x^2 + 7)(x - 3) \sim 6x - 18$, i.e., $[(x^2 + 7)(x - 3)] = [6x - 18]$.

(b) Assume that we have $p(x) = a_n x^n + \dots + a_1 x + a_0$ with $n \ge 2$ and $a_n \ne 0$. Then we can write

$$p(x) = p_0(x) = (x^2 + 1)a_n x^{n-2} + a_{n-1}x^{n-1} + (a_{n-2} - 1)x^{n-2} + a_{n-3}x^{n-3} + \dots + a_1x + a_0.$$

This shows that $[p_0(x)] = [p_1(x)]$, setting

$$p_1(x) = a_{n-1}x^{n-1} + (a_{n-2} - 1)x^{n-2} + a_{n-3}x^{n-3} + \dots + a_1x + a_0,$$

and $p_1(x)$ has a strictly lower degree than $p_0(x)$. We can continue with this reduction process until we end up with a polynomial $p_k(x) = b_1x + b_0$ of degree at most one such that $[p_0(x)] = [p_k(x)]$. This shows that every equivalence class [p(x)] has a representative of the form $b_1x + b_2$ with $b_1, b_2 \in \mathbb{R}$.

(c) Note that a non-trivial linear real polynomial ax + b is not divisible by the quadratic polynomial $x^2 + 1$. This shows that $[ax + b] \neq [a'x + b']$ if $(a, b) \neq (a', b')$. This fact, together with (b), imply that the map

$$[ax+b] \mapsto ai+b$$

is a bijection between the equivalence classes of $\mathbb{R}[x]$ and the set of complex numbers \mathbb{C} . Moreover, we have

$$(ax+b)(cx+d) = acx^2 + (ad+bc)x + bd = ac(x^2+1) + (ad+bc)x + (bd-ac),$$

i.e.,

$$[(ax+b)(cx+d)] = [(ad+bc)x+(bd-ac)] \mapsto (ad+bc)i+(bd-ac) = (ai+b)(ci+d).$$