Preimages and Equivalence Relations (Week 9)

Question 1 Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, f(x, y, z)=x^{2}+y^{2}+z^{2}$. Describe the preimages $f^{-1}(\{-1\}), f^{-1}(\{0\}), f^{-1}(\{1\})$ and $f^{-1}([1,2])$ geometrically.

Question 2 Let $f:[0,4] \rightarrow \mathbb{R}, f(x)=\sin (\pi x)$. Sketch the graph of f and determine the preimage $f^{-1}([0,1)) \subset \mathbb{R}$.

Question 3 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map. As introduced in the lecture, the image $f(X)$ of a set $X \subset \mathbb{R}$ is defined as

$$
f(X):=\{f(x) \mid x \in X\}
$$

that is, all image points of set X under f. Moreover, the preimage $f^{-1}(X)$ of a set $Y \subset \mathbb{R}$ is defined as

$$
f^{-1}(Y):=\{x \in X \mid f(x) \in Y\}
$$

that is, all points which are mapped into Y via f.
(a) Let $Y_{1}, Y_{2} \subset \mathbb{R}$. Show that

$$
f^{-1}\left(Y_{1} \cap Y_{2}\right)=f^{-1}\left(Y_{1}\right) \cap f^{-1}\left(Y_{2}\right)
$$

(b) Let $f(x)=x^{2}$. Find two sets $X_{1}, X_{2} \subset \mathbb{R}$ such that

$$
f\left(X_{1} \cap X_{2}\right) \neq f\left(X_{1}\right) \cap f\left(X_{2}\right) .
$$

This shows that property (a) for preimages does not hold for images.
Question 4 Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps. Show the following facts:
(a) If f and g are injective, then $g \circ f$ is also injective.
(b) If f and g are surjective, then $g \circ f$ is also surjective.
(c) If f and g are bijective, then $g \circ f$ is also bijective and

$$
(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Question 5 Check whether the following definitions are equivalence relations:
(a) On $\mathbb{R}: x \sim y$ if $x y=0$.
(b) On $\mathbb{R}: x \sim y$ if $x-y \in \mathbb{Q}$.
(c) On $\mathbb{R}^{2}:(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if $x^{2}-\left(x^{\prime}\right)^{2}=y^{2}-\left(y^{\prime}\right)^{2}$.
(d) On $\mathbb{R}^{2}:(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if $(x, y) \perp\left(x^{\prime}, y^{\prime}\right)$.
(e) On $\mathbb{R}^{n}, n \geq 2: v \sim w$ if v and w are linearly dependent.
(f) On real $n \times n$ matrices: $A \sim B$ if there exists an invertible real matrix X such that $A=X B X^{-1}$.
(g) On finite and infinite sets: $X \sim Y$ if X and Y have the same cardinality.
(h) On continuous functions $f, g:[0,1] \rightarrow \mathbb{R}: f \sim g$ if $\int_{0}^{1} f(x)-g(x) d x=0$.

Question 6 Show that the following definition is an equivalence relation on $\mathbb{N} \times \mathbb{N}$:

$$
(a, b) \sim(c, d) \quad \Leftrightarrow \quad a d=b c .
$$

We denote the equivalence class of (a, b) by $[a, b]$. Show that

$$
[a, b] \otimes[c, d]:=[a c, a d-b c]
$$

is a well-defined operation on the equivalence classes.
Question 7 Let $\mathbb{R}[x]$ be the set of all real polynomials. Show that the following definition is an equivalence relation on $\mathbb{R}[x]$:

$$
p(x) \sim q(x) \quad \Leftrightarrow \quad p(x)-q(x) \text { is divisible by } x^{2}+1 \text {. }
$$

We denote the equivalence class of $p(x)$ by $[p(x)]$.
(a) Show that

$$
\left[\left(x^{2}+7\right)(x-3)\right]=[6 x-18] .
$$

(b) Show that every equivalence class $[p(x)]$ has a representative of the form $a x+b$ with $a, b \in \mathbb{R}$, i.e., $p(x) \sim a x+b$.
(c) Show that the map

$$
[a x+b] \mapsto a i+b
$$

is a bijection between the equivalence classes of $\mathbb{R}[x]$ and the complex numbers \mathbb{C} and that

$$
[(a x+b)(c x+d)] \mapsto(a i+b)(c i+d) .
$$

