
Answers to Proof Problems

Question 1 (Proof by Induction) For n ∈ N, let A(n) be the following
open statement:

For any n different straight lines in the plane, the regions can always be

coloured black and white so that adjacent regions have different colours.

Start of Induction (n = 1): Any single straight line divides the plane
into to halfpanes. Obviously, we can colour one halfplane black and the other
white. So the statement A(1) is true.

Induction Step: Assume that the statement A(n) is true for some n ∈
N. Consider a configuration of n+1 different straight lines L1, . . . , Ln+1 in the
plane. We conclude from A(n) that we can colour the regions obtained from
the n lines L1, . . . , Ln black and white so that adjacent regions have different
colours. Adding the line Ln+1 cuts through some of the regions and splits
them into two, other regions are not affected. Now consider the halfplanes
on both sides of the line Ln+1. Keep the colours of all new regions on one
side of this line, and invert the colours of all new regions on the other side
of this line (i.e., swap there the colours white and black). Two new adjacent
regions on the same side of the line Ln+1 will obviously have different colours,
and two adjacent regions along the line Ln+1 will also have different colours,
by the construction. This shows that the statement A(n + 1) is also true,
finishing the Induction Step.

Question 2 (Indirect Proofs)

(a) Assume that there are two numbers x, y ∈ N with x > y such that 2y+1
is not a prime but p := x2−y2 is a prime. Since we have the factorisation
x2− y2 = (x− y) · (x+ y) of the prime p into two natural numbers, one
of them must be 1 and the other must be p. This implies that we must
have x− y = 1, i.e., x = 1+ y and p = x2 − y2 = 1 · (2y + 1) = 2y + 1.
But 2y+1 is not a prime number and we end up with a contradiction.

(b) Assume there exists a pair x, y ∈ N with
√

x2 + y2 = x+ y. Squaring
both sides leads to x2 + y2 = (x + y)2 = x2 + 2xy + y2, i.e., 2xy = 0.
This implies that x = 0 or y = 0, in contradiction to x, y ∈ N.



Question 3 (Proof by Strong Induction)

Start of Induction (n = 12, 13, 14): We have

12 = 7 · 0 + 3 · 4, 13 = 7 · 1 + 3 · 2, 14 = 7 · 2 + 3 · 0.

Induction Step: Assume that n, n + 1, n + 2 can be written in the
form 7l + 3m with nonnegative integers l, m for some n ≥ 12, in particular
n = 7l0 + 3m0. Then we have

n+ 3 = 7l0 + 3(m0 + 1),

i.e., n+ 3 can also be written in the form 7l+ 3m with nonnegative integers
l, m.

Here is an alternative proof using normal Induction:

Start of Induction (n = 12): We have

12 = 7 · 0 + 3 · 4.

Induction Step: Assume that n can be written in the form 7l+3m with
nonnegative integers l, m for some n ≥ 12, in particular n = 7l0+3m0. Then
we obviously have l0 ≥ 2 or m0 ≥ 2, for otherwise 7l0 + 3m0 ≤ 7 + 3 = 10,
but n ≥ 12. In the case l0 ≥ 2, we have

n+ 1 = 7(l0 − 2) + 3(m0 + 5)

with l0 − 2, m0 + 5 ∈ N ∪ {0}. In the case m0 ≥ 2, we have

n+ 1 = 7(l0 + 1) + 3(m0 − 2)

with l0 + 1, m0 − 2 ∈ N ∩ {0}, finishing the induction step in both cases.

Question 4 The flaw is in the Induction step. Let n ∈ N and k, l be
natural numbers such that max(k, l) = n + 1. Then it is true that
max(k−1, l−1) = n, but k−1, l−1 may no longer be both natural numbers
(for example if one of k, l is equal to 1). This means that we cannot apply
the Induction hypothesis to conclude that k − 1 = l − 1.



Question 5 (Indirect Proof) Let x, y, z > 0. Assume that x > z and
y2 = xz and not (x > y > z). We need to derive a contradiction. Note first
that not (x > y > z) is ”x ≤ y or y ≤ z”. We consider both cases separately:

• If x ≤ y, then we have together with x > z and the positivity of all
three numbers x, y, z:

xz < x2 ≤ xy ≤ y2,

contradicting to y2 = xz.

• If y ≤ z, then we have together with x > z and the positivity of all
three numbers x, y, z:

xz > zz ≥ zy ≥ y2,

contradicting to y2 = xz.

Question 6 (Proof by Induction)

Start of Induction (n = 0): 23
0

+ 1 = 2 + 1 = 3 is divisible by 31 = 3.

Induction Step: Assume that 3n+1 divides 23
n

+1 for some n ≥ 0. Our
goal is to prove that 3n+2 divides 23

n+1

+ 1. By the hint, we have

23
n+1

+ 1 =
(

23
n)3

+ 13 =
(

23
n

+ 1
) (

22·3
n

− 23
n

+ 1
)

.

We conclude from the Induction hypothesis that 3n+1 divides the first factor
23

n

+ 1. It remains to show that 3 divides the second factor 22·3
n

− 23
n

+ 1.
We write

22·3
n

− 23
n

+ 1 =
(

23
n

+ 1
)2

− 3 · 23
n

.

Using again the Induction hypothesis, we conclude that 3 divides the right
hand side of this last equation. This shows that 3n+1 · 3 divides 23

n+1

+ 1,
finishing the Induction Step.

Question 7 (Proof by Induction)

Start of Induction (n = 1): We have 0 < a1 = 1 < 5.

Induction Step: Assume that 0 < an < 5 for some n ∈ N. Then we
have, using the recursion formula and 2 < an + 2 < 7,

an+1 =
(6an + 12)− 7

an + 2
= 6−

7

an + 2
< 6−

7

7
= 5.

Moreover, an > 0 implies 6an + 5 > 0 and an + 2 > 0, therefore

an+1 =
6an + 5

an + 2
> 0.

This shows that 0 < an+1 < 5.



Question 8 (Indirect Proof) Assume that there is an integer n ≥ 2
such that

S = 1 +
1

2
+

1

3
+ · · ·+

1

n
(1)

is an integer. Our goal is to show that this leads to a contradiction.

(a) Using the fact of the question, we choose a prime number p such that
p ≤ n < 2p. Next we multiply the right hand side of (1) with a :=
(n!)/p. Then every term in the new sum becomes an integer, except
for the term a1

p
. If a1

p
were an integer, then

C := 1 · 2 · · · (p− 1)(p+ 1) · · · (n− 1)n

would be divisible by p. But then one of the factors of the product C
would have to be divisible by p, by the unique prime factorisation. The
only numbers divisible by p are the multiples of p, i.e., p, 2p, 3p, . . . .
But neither p is in the product C, nor any higher multiple of p, since
we have n < 2p. This is the required contradiction.

(b) Choose the biggest integer k ≥ 0 so that 2k ≤ n. Then we obviously
have 2k ≤ n < 2k+1. Let D ∈ N be the least common multiple of
1, 2, . . . , n. Using unique prime factorisation, we see that the prime
factor 2 is contained in D with precisely the multiplicity k. Since
n ≥ 2, D must be even. This implies that SD is even. The fact that
2k divides D but 2k+1 does not divide D implies that all terms D · 1

m

with 1 ≤ m ≤ n, m 6= 2k are even, and that D · 1

2k
is odd. But this

implies that their sum SD must be odd which is a contradiction.

Remark: Since the natural numbers are involved, a first guess
might be to prove the statement with Induction. But this approach
will not lead to success!



Question 9 (Proof by Induction)

Start of Induction (k = 1): It is easy to see that if we remove a unit
square anywhere in a square grid of side length 2 then we can cover the
remaining area by just one piece.

Induction Step: Assume we have proved the statement for all square
grids of side length 2k. Let us consider a square grid of side length 2k+1,
denotes by Q. Q is obviously made up by four square grids of side length 2k,
which we denote by Q1, Q2, Q3, Q4. Assume we remove a unit square from Q,
denoted by B. Assume also, without loss of generality, that this removed unit
square lies in Q1. From the Induction Hypothesis we conclude that Q1\B
can be covered without overlaps by pieces. Place one piece P into the union
Q2 ∪ Q3 ∪ Q4, such that P covers precisely one unit square in each of the
square grids Q2, Q3, Q4. Using again the Induction Hypothesis, we conclude
that each Qj\P (j = 2, 3, 4) can be covered without overlaps by pieces.
This shows that we can cover Q\B without overlaps by pieces, finishing the
Induction Step. The following picture illustrates the above arguments:
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