## Proof Problems (Week 5)

The proof techniques used in the following questions are **Induction** and **Indirect Proof**.

**Question 1** Several straight lines are drawn on a plane. Prove that one can colour the regions, created as a result of the intersection of the lines, black and white so that adjacent regions have different colours.

**Question 2** Prove the following facts:

- (a) Let  $x, y \in \mathbb{N}$  and x > y. If 2y + 1 is not a prime then  $x^2 y^2$  is also not a prime.
- (b) For any pair of positive integers x, y we have  $\sqrt{x^2 + y^2} \neq x + y$ .

Question 3 (taken from M.V. Day: "An Introduction to Proofs and the Mathematical Vernacular") Show that every integer  $n \ge 12$  can be written in the form n = 7l + 3m where l and m are nonnegative integers.

Question 4 (taken from E.J. Barbeau: "Mathematical fallacies, flaws and flimflam") For  $n \in \mathbb{N}$ , let A(n) be the open statement that if k, l are natural numbers with  $\max(k, l) = n$  then k = l. Here is an Induction Proof that A(n) is true for all  $n \in \mathbb{N}$ :

Start of Induction (n = 1): If k, l are natural number with  $\max(k, l) = 1$  then we have k = l = 1. This shows that A(1) is true.

**Induction Step:** Assume that A(n) is true for some  $n \in \mathbb{N}$ . Let k, l be natural numbers such that  $\max(k, l) = n + 1$ . Then  $\max(k - 1, l - 1) = n$ , and we conclude from A(n) to be true that k - 1 = l - 1. Adding 1 to both sides yields k = l. This shows that A(n + 1) is a true statement.

Can you find what is wrong here?

**Question 5** (taken from M.V. Day: "An Introduction to Proofs and the Mathematical Vernacular") Suppose that x, y, z are positive real numbers. Prove that x > z and  $y^2 = xz$  together imply that x > y > z.

Question 6 Show that  $2^{3^n} + 1$  is divisible by  $3^{n+1}$  for every integer  $n \ge 0$ . Hint: You may need the identity  $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$ .

Question 7 (taken from P.J. Eccles: "An Introduction to Mathematical Reasoning: Numbers, Sets and Functions") Let  $a_n$  be recursively defined by  $a_1 = 1$  and  $a_{n+1} = \frac{6a_n+5}{a_n+2}$  for  $n \in \mathbb{N}$ . Show that  $0 < a_n < 5$ . **Question 8** Let  $n \ge 2$  be an integer. Then the sum

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

cannot be an integer.

- (a) Try to prove this statement with the help of the following fact (which you may use without proof): For every integer  $n \ge 2$  there is a prime number p satisfying  $p \le n < 2p$ .
- (b) **Difficult:** Try to prove this statement without the previously mentioned fact, using that there is an integer  $k \ge 0$  such that  $2^k \le n < 2^{k+1}$ .

For both proofs you may need the following fact, which you can use without proof: every integer  $m \ge 2$  can be written in a unique way as a product of primes (uniqueness means here that two factorisations of m into primes differ only by the order of the factors, e.g.,  $10 = 2 \cdot 5 = 5 \cdot 2$ ).

Question 9 Let  $k \in \mathbb{N}$ . Consider a square grid consisting of side length  $2^k$  (i.e., the square grid consists of  $2^{2k}$  unit squares). Remove one unit square anywhere in the grid. Show that you can cover the remaining area without overlaps by the following pieces, built up by 3 unit squares:

