
Answers to Set Problems

Question 1 There are different ways to describe this set. One expression
for it is

((A ∩ C)\B) ∪ (B\A).

Another expression is

(B ∪ (C ∩ A))\(A ∩B).

Question 2 Let X = {x ∈ R | x ≤ a} ∩ {x ∈ R | min(x, a) ≤ b} and
Y = {x ∈ R | x ≤ min(a, b)}. To show that the two sets X and Y are equal,
we have to prove two facts. Firstly, every element of X is also an element
of Y . Secondly, every element of Y is also an element of X. Here are the
arguments:

• If x ∈ X then x ∈ Y : Note that x ≤ a and min(x, a) ≤ b implies that
x = min(x, a) ≤ b and, therefore x ≤ min(a, b).

• If x ∈ Y then x ∈ X: We conclude from x ≤ min(a, b) that x ≤ a, i.e.,
x = min(x, a), and x ≤ b. This implies x ≤ a and x = min(x, a) ≤ b.

Question 3 As in Question 2, we have to prove firstly that every element
of the left hand set is also an element of the right hand set, and secondly
that every element of the right hand set is also an element of the left hand
set.

Let Y1 := {2k − 1 | k ∈ N} and Y2 := {4j | j ∈ N}. Then Y1 is the set
of all positive odd integers, and Y2 is the set of all positive integers, divisible
by 4.

Let a, b ∈ N ∪ {0}, a > b. Then 0 < a2 − b2 = (a − b)(a + b). If a, b are
both odd or both even, the factors a−b, a+b are both even and their product
is therefore a positive integer, divisible by 4, i.e., a2 − b2 ∈ Y2. Otherwise
a − b, a + b are both odd and their product is a positive odd integer, i.e.,
a2 − b2 ∈ Y1. This shows that every element of the left hand set is also an
element of the right hand set.

Now we choose an arbitrary element 2k − 1 ∈ Y1 with k ∈ N. Since
k2 − (k − 1)2 = 2k − 1, we see that this element is also in the left hand
set. Finally, we choose an arbitrary element 4j ∈ Y2 with j ∈ N. Since
(j+1)2− (j−1)2 = 4j, this element is also in the left hand set. This finishes
the proof.



Question 4

1. The statement is true. We give names to the elements of the set X,
i.e. X = {a1, . . . , aN}. Now, every subset of X corresponds uniquely
to N yes/no choices, deciding for each of the elements aj whether it is
in the subset or not. We have 2N possibilities to make these choices,
therefore P(X) has exactly 2N elements.

(This fact can also be proved rigorously using Induction. But Induction
will be introduced later, so we provided arguments avoiding this very
important technique.)

2. The statement is true.

Let U ∈ P(Z). Then U ⊂ Z. Since U ⊂ Z and Z ⊂ X and Z ⊂ Y ,
we also have U ⊂ X and U ⊂ Y , i.e., U ∈ P(X) and X ∈ P(Y ). This
shows that U ∈ P(X) ∩ P(Y ).

Conversely, let U ∈ P(X) ∩ P(Y ). Then U ⊂ X and U ⊂ Y , i.e.,
U ⊂ X ∩ Y = Z. This shows that U ∈ P(Z).

3. The statement is false. We only need to provide a counterexample. Let
X = {a} and Y = {b}. Then Z = {a, b} and Z ∈ P(Z). But Z 6⊂ X

and Z 6⊂ Y , therefore Z 6∈ P(X) ∪ P(Y ).

Question 5 Both Jack’s Venn Diagram and his example are correct. The
problem lies in the conclusion from the Venn Diagram. We enumerate the
components of both Venn Diagrams from 1 to 14 as follows:
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You can easily check that these components describe the following subsets
of Z:



component subset component subset
1 U c ∩ V c ∩Xc ∩ Y c 8 U c ∩ V ∩Xc ∩ Y

2 U ∩ V c ∩Xc ∩ Y c 9 U ∩ V ∩X ∩ Y

3 U ∩ V ∩Xc ∩ Y c 10 U ∩ V c ∩X ∩ Y

4 U c ∩ V ∩Xc ∩ Y c 11 U c ∩ V ∩X ∩ Y

5 U ∩ V c ∩X ∩ Y c 12 U c ∩ V c ∩X ∩ Y c

6 U ∩ V ∩X ∩ Y c 13 U c ∩ V c ∩X ∩ Y

7 U ∩ V ∩Xc ∩ Y 14 U c ∩ V c ∩Xc ∩ Y

Now, there are 16 combinations U∗ ∩ V ∗ ∩ X∗ ∩ Y ∗, where ∗ is either
no symbol or the complement symbol, so the Venn Diagram misses out the
two combinations U c ∩ V ∩ X ∩ Y c and U ∩ V c ∩ Xc ∩ Y . In other words,
the diagram identifies the set U ∩ V c ∩ Xc ∩ Y with the empty set (i.e.,
there is no region representing this set). So in the Venn Diagram the sets
Y ∩ (U c ∩ V c ∩Xc) and

T := (Y ∩ (U c ∩ V c ∩Xc)) ∪ (U ∩ V c ∩Xc ∩ Y ) (1)

are indistiguishable, since the second set in the union (1) is represented as the
empty set. Using the laws of commutativity, associativity and distributivity
and, finally, De Morgan’s Rule we transform the set (1) into the set (V ∪X ∪
Y c)c:

T = (U c ∩ (V c ∩Xc ∩ Y )) ∪ (U ∩ (V c ∩Xc ∩ Y ))

= (U c ∪ U) ∩ (V c ∩Xc ∩ Y )

= Z ∩ (V c ∩Xc ∩ Y )

= (V c ∩Xc ∩ Y )

= (V ∪X ∪ Y c)c.

Here, we see that we have to be careful with Venn Diagrams. While
Venn Diagrams usually illustrate set relations correctly for operations on
three sets, they cannot represent all 16 possibilities of intersection in the
plane in the case of four sets. A remedy would be to draw Venn Diagrams
with sets in R

3, but this would be hard to imagine.



Question 6

• The Venn Diagram looks as follows:

X
Y

X∆Y

• The Venn Diagram for both sets looks the same:

X Y

Z

(X∆Y )∆Z = X∆(Y∆Z)

Both sets are equal and can be described in words as follows: They
consist of all elements which belong to only one of the three sets or lie
in the intersection of all three sets X, Y, Z. Therefore, another way of
describing these sets is

(X ∩ Y c ∩ Zc) ∪ (Xc ∩ Y ∩ Z) ∪ (X ∩ Y ∩ Zc) ∪ (X ∩ Y ∩ Z).

• Let x ∈ X∆Z. Then x belongs to precisely one of the two sets X and
Z. Now we have two cases to consider: The first case is x ∈ Y and the
second case is x 6∈ Y . One of these two cases is always fulfilled.

Firstly, assume that x ∈ Y . Since x belongs to precisely one of the
two sets X and Z, it does not belong to either X or to Z. If x does
not belong to X, then x ∈ X∆Y . If x does not belong to Z, then



x ∈ Y∆Z. So we conclude in the first case that we always have x ∈
(X∆Y ) ∪ (Y∆Z).

Secondly, assume that x 6∈ Y . Since x belongs to precisely one of the
two sets X and Z, it belongs to either X or to Z. If x belongs to X,
then x ∈ X∆Y . If x belongs to Z, then x ∈ Y∆Z. So we conclude in
the second case that we always have x ∈ (X∆Y ) ∪ (Y∆Z).

This shows that

x ∈ X∆Y ⇒ x ∈ (X∆Y ) ∪ (Y∆Z),

finishing the proof of the inclusion.


