
Lecture 6

In the last lecture we discussed two particular Proof Techniques, namely

Indirect Proof and Induction. In this lecture, we discuss an important

third Proof Technique, called the Contrapositive Method. Mathemati-

cians also speak often about necessary and sufficient conditions. We will

have a closed look at this.

Before we discuss the Contrapositive Method, let us again start with a
bit of logic:

We show that the following two statements are equivalent: ”A ⇒ B” and
”(not B) ⇒ (not A)”:

A B not A not B A ⇒ B (not B) ⇒ (not A)
False False True True True True
False True True False True True
True False False True False False
True True False False True True

The two statements ”A ⇒ B” and ”(not B) ⇒ (not A)” are called con-

trapositive statements”. The principle of contrapositive statements is
very useful for a proof technique, called Contrapositive Method. Let us look
again at an indirect proof of the last seminar:

Proposition 1. Let x, y ∈ N and x > y. If 2y+1 is not a prime then x2−y2

is also not a prime.

The indirect proof started with: Assume 2y+1 is not a prime and x2−y2

is a prime. This assumption leads to a Contradiction!

The contrapositive of the above statement is

Proposition 2. Let x, y ∈ N and x > y. If x2 − y2 is a prime then 2y + 1
is also a prime.

Another way of proving Proposition 1 is to prove its contrapositive state-
ment (Proposition 2) directly. We call this method the Contrapositive

Method.

Contrapositive Proof Method for Proposition 1: Let x2 − y2 be
prime. Since x2 − y2 = (x− y)(x+ y), we must have x− y = 1 and x+ y =
x2 − y2. This leads to x2 − y2 = x+ y = (y + 1) + y = 2y + 1, i.e., 2y + 1 is
a prime number. ✷
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But be careful: Do not confuse the Contrapositive Statement of ”If
A then B” with ”If not A then not B”. Here is an example to see that the
first statement can be true while the second is false, so these statements are
not equivalent: ”If x = 2 then x is even” is TRUE, but ”If x 6= 2 then x

is not even” is FALSE. (But the contrapositive statement ”If x is not even
then x 6= 2” is TRUE!)

Another Example for the Contrapositive Method:

Lemma. Let x ∈ N. If x2 is even then x is also even.

Proof: The contrapositive is ”If x is not even (i.e., odd) then x2 is not
even (i.e., odd)”. We prove this directly. Assume that x is odd, i.e., x = 2k−1
with k ∈ N. Then

x2 = (2k − 1)2 = 4k2 − 4k + 1 = 2(2k2 − 2k) + 1,

i.e., x2 is also odd. ✷

Now we will discuss necessary and sufficient conditions:

Definition. A necessary condition is one which must be satisfied so that

a statement is true. A sufficient condition is one which guarantees that a

statement is true.

Here are some examples: Let f : R → R be a function which is infinitely
many times differentiable. x0 ∈ R is called local minimum of f if there
exists ǫ > 0 and a little interval I := (x0−ǫ, x0+ǫ) ⊂ R so that f(x) ≥ f(x0)
for all x ∈ I.

(a) A necessary condition for x0 to be a local minimum of f is f ′(x0) = 0.
But this condition is not sufficient.

Explanation: If f ′(x0) 6= 0 then f would be strictly increasing or
decreasing in a neighbourhood of x0, i.e., x0 could not be a local mini-
mum. Therefore f ′(x0) = 0 is necessary for x0 to be a local minimum.
For f(x) = x3, we have f ′(0) = 0, but x0 = 0 is not a local minimum.
Therefore f ′(x0) = 0 is not sufficient for x0 to be a local minimum.

(b) A sufficient condition for x0 to be a local minimum of f is (f ′(x0) = 0
and f ′′(x0) > 0). But this condition is not necessary.

Explanation: f ′′(x0) > 0 means that f ′ is strictly increasing in a small
enough interval I = (x0 − ǫ, x0 + ǫ). Since f ′(x0) = 0, we know that
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f(x) is strictly decreasing for x ∈ I and x < x0, and strictly increasing
for x ∈ I and x > x0. Therefore x0 must be a local minimum. For
f(x) = x4, x0 = 0 is a local minimum (even a global minimum), but we
have f ′(0) = 0 and f ′′(0) = 0. Therefore (f ′(x0) = 0 and f ′′(x0) > 0)
is not a necessary condition.

For the next example, let us recall the notions of injectivity and sur-

jectivity. Here are the definitions:

Definition. Let X, Y be two sets and f : X → Y be a map. f is called

injective, if
∀x1, x2 ∈ X, x1 6= x2 : f(x1) 6= f(x2).

f is called surjective, if

∀y ∈ Y ∃x ∈ X : y = f(x).

f is called bijective or one to one, if f is both injective and surjective.

Here is our next example: Let N,M ∈ N and X := {1, 2, . . . , N} and
Y := {1, 2, . . . ,M}, and f : X → Y be a map. Then

(a) N < M is a sufficient condition for f to be not surjective.
Explanation: Since f maps every element of X to just one element
in Y , there number of elements in the image of f

f(X) := {f(k) | k ∈ X} ⊂ Y

is less or equal to N . But the set Y contains M > N elements, so not
all elements of Y can be in the image of f , i.e., f is not surjective.

(b) N ≤ M is a necessary condition for f to be injective.
Explanation: If f is injective, then different elements of X must
be mapped to different elements of Y under f . This means that the
number of elements in Y cannot be smaller than the number of elements
in X , i.e., M = |Y | ≥ |X| = N . But be aware: N ≤ M does not imply
that f is injective, i.e., N ≤ M is not sufficient for f to be injective.
An example of a non-injective function satisfying this condition is f :
{1, 2} → {1, 2, 3, 4} with f(1) = f(2) = 2.
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