Lecture 6

In the last lecture we discussed two particular Proof Techniques, namely Indirect Proof and Induction. In this lecture, we discuss an important third Proof Technique, called the Contrapositive Method. Mathematicians also speak often about necessary and sufficient conditions. We will have a closed look at this.

Before we discuss the Contrapositive Method, let us again start with a bit of logic:

We show that the following two statements are equivalent: " $\mathrm{A} \Rightarrow \mathrm{B}$ " and $"($ not $B) \Rightarrow($ not A)":

A	B	not A	not B	$\mathrm{A} \Rightarrow \mathrm{B}$	$($ not B$) \Rightarrow($ not A)
False	False	True	True	True	True
False	True	True	False	True	True
True	False	False	True	False	False
True	True	False	False	True	True

The two statements "A $\Rightarrow \mathrm{B}$ " and " (not B$) \Rightarrow($ not A$)$ " are called contrapositive statements". The principle of contrapositive statements is very useful for a proof technique, called Contrapositive Method. Let us look again at an indirect proof of the last seminar:

Proposition 1. Let $x, y \in \mathbb{N}$ and $x>y$. If $2 y+1$ is not a prime then $x^{2}-y^{2}$ is also not a prime.

The indirect proof started with: Assume $2 y+1$ is not a prime and $x^{2}-y^{2}$ is a prime. This assumption leads to a Contradiction!

The contrapositive of the above statement is
Proposition 2. Let $x, y \in \mathbb{N}$ and $x>y$. If $x^{2}-y^{2}$ is a prime then $2 y+1$ is also a prime.

Another way of proving Proposition 1 is to prove its contrapositive statement (Proposition 2) directly. We call this method the Contrapositive Method.

Contrapositive Proof Method for Proposition 1: Let $x^{2}-y^{2}$ be prime. Since $x^{2}-y^{2}=(x-y)(x+y)$, we must have $x-y=1$ and $x+y=$ $x^{2}-y^{2}$. This leads to $x^{2}-y^{2}=x+y=(y+1)+y=2 y+1$, i.e., $2 y+1$ is a prime number.

But be careful: Do not confuse the Contrapositive Statement of "If A then B" with "If not A then not B". Here is an example to see that the first statement can be true while the second is false, so these statements are not equivalent: "If $x=2$ then x is even" is TRUE, but "If $x \neq 2$ then x is not even" is FALSE. (But the contrapositive statement "If x is not even then $x \neq 2$ " is TRUE!)

Another Example for the Contrapositive Method:

Lemma. Let $x \in \mathbb{N}$. If x^{2} is even then x is also even.
Proof: The contrapositive is "If x is not even (i.e., odd) then x^{2} is not even (i.e., odd)". We prove this directly. Assume that x is odd, i.e., $x=2 k-1$ with $k \in \mathbb{N}$. Then

$$
x^{2}=(2 k-1)^{2}=4 k^{2}-4 k+1=2\left(2 k^{2}-2 k\right)+1,
$$

i.e., x^{2} is also odd.

Now we will discuss necessary and sufficient conditions:
Definition. A necessary condition is one which must be satisfied so that a statement is true. A sufficient condition is one which guarantees that a statement is true.

Here are some examples: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which is infinitely many times differentiable. $x_{0} \in \mathbb{R}$ is called local minimum of f if there exists $\epsilon>0$ and a little interval $I:=\left(x_{0}-\epsilon, x_{0}+\epsilon\right) \subset \mathbb{R}$ so that $f(x) \geq f\left(x_{0}\right)$ for all $x \in I$.
(a) A necessary condition for x_{0} to be a local minimum of f is $f^{\prime}\left(x_{0}\right)=0$. But this condition is not sufficient.

Explanation: If $f^{\prime}\left(x_{0}\right) \neq 0$ then f would be strictly increasing or decreasing in a neighbourhood of x_{0}, i.e., x_{0} could not be a local minimum. Therefore $f^{\prime}\left(x_{0}\right)=0$ is necessary for x_{0} to be a local minimum. For $f(x)=x^{3}$, we have $f^{\prime}(0)=0$, but $x_{0}=0$ is not a local minimum. Therefore $f^{\prime}\left(x_{0}\right)=0$ is not sufficient for x_{0} to be a local minimum.
(b) A sufficient condition for x_{0} to be a local minimum of f is $\left(f^{\prime}\left(x_{0}\right)=0\right.$ and $\left.f^{\prime \prime}\left(x_{0}\right)>0\right)$. But this condition is not necessary.

Explanation: $f^{\prime \prime}\left(x_{0}\right)>0$ means that f^{\prime} is strictly increasing in a small enough interval $I=\left(x_{0}-\epsilon, x_{0}+\epsilon\right)$. Since $f^{\prime}\left(x_{0}\right)=0$, we know that
$f(x)$ is strictly decreasing for $x \in I$ and $x<x_{0}$, and strictly increasing for $x \in I$ and $x>x_{0}$. Therefore x_{0} must be a local minimum. For $f(x)=x^{4}, x_{0}=0$ is a local minimum (even a global minimum), but we have $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=0$. Therefore $\left(f^{\prime}\left(x_{0}\right)=0\right.$ and $\left.f^{\prime \prime}\left(x_{0}\right)>0\right)$ is not a necessary condition.

For the next example, let us recall the notions of injectivity and surjectivity. Here are the definitions:

Definition. Let X, Y be two sets and $f: X \rightarrow Y$ be a map. f is called injective, if

$$
\forall x_{1}, x_{2} \in X, x_{1} \neq x_{2}: f\left(x_{1}\right) \neq f\left(x_{2}\right) .
$$

f is called surjective, if

$$
\forall y \in Y \exists x \in X: y=f(x)
$$

f is called bijective or one to one, if f is both injective and surjective.
Here is our next example: Let $N, M \in \mathbb{N}$ and $X:=\{1,2, \ldots, N\}$ and $Y:=\{1,2, \ldots, M\}$, and $f: X \rightarrow Y$ be a map. Then
(a) $N<M$ is a sufficient condition for f to be not surjective.

Explanation: Since f maps every element of X to just one element in Y, there number of elements in the image of f

$$
f(X):=\{f(k) \mid k \in X\} \subset Y
$$

is less or equal to N. But the set Y contains $M>N$ elements, so not all elements of Y can be in the image of f, i.e., f is not surjective.
(b) $N \leq M$ is a necessary condition for f to be injective.

Explanation: If f is injective, then different elements of X must be mapped to different elements of Y under f. This means that the number of elements in Y cannot be smaller than the number of elements in X, i.e., $M=|Y| \geq|X|=N$. But be aware: $N \leq M$ does not imply that f is injective, i.e., $N \leq M$ is not sufficient for f to be injective. An example of a non-injective function satisfying this condition is f : $\{1,2\} \rightarrow\{1,2,3,4\}$ with $f(1)=f(2)=2$.

