
Lecture 4

In the last lecture we introduced mathematical structure elements and dis-

cussed how to write a proper mathematical text. In this lecture, we will con-

tinue with a bit more logic, in particular quantifiers and negations and

with infinite unions and intersections of sets.

First, recall De Morgan’s Rule for statements:

not (A or B) ⇔ (not A) and (not B).

There is an analogous statement for sets: Assuming X, Y ⊂ Z. Then we
have (X ∪ Y )c = Xc ∩ Y c. Here is the Venn Diagram for illustration:

nc c cX Y

Z

X Y

Z

X Y

(X u Y)

For the proof that both sets are equal, we use arguments from logic:

x ∈ (X ∪ Y )c ⇔ x ∈ Z\(X ∪ Y )

⇔ x ∈ Zand not(x ∈ X ∪ Y )

⇔ x ∈ Zand not(x ∈ X or x ∈ Y )

⇔ x ∈ Z and [(not x ∈ X) and (not x ∈ Y )] (1)

⇔ (x ∈ Z and (x 6∈ X)) and (x ∈ Z and (x 6∈ Y ))

⇔ (x ∈ Z and (x 6∈ X)) and (x ∈ Z and (x 6∈ Y ))

⇔ (x ∈ Xc) and (x ∈ Y c)

⇔ x ∈ Xc ∩ Y c.

Note that we used De Morgan’s Rule at (1).

In fact, the expression ”x ∈ (X ∪Y )c” is a so-called open statement, since
its truth value can only be determined once we choose an explicit object for
x and specify the sets X and Y explicitly. We consider x,X, Y as variables of
the open statement which can be specified. Open statements contain those
variables and become proper statements, once these variables are explicitly
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chosen. Logic works also for open statements. Here are examples of other
”open statements”:

A(n) means n is a square of an integer,

B(x, y) means x2 + y2 ≥ 1,

C(x,X, Y ) means x ∈ X\Y.

Then the statements A(4), B(1,−1), C(1/2,Q,N) are true, and the state-
ments A(π), B(0, 0) are false.

Next, we introduce a bit more of notation, Quantifiers:

• ∀ stands for ”for all”

• ∃ stands for ”there exists”

• ∃! stands for ”there exists a unique”

Quantifiers can be combined nicely with open statements.

Example:

∀a ∈ R\{0} ∀b ∈ R ∃!x ∈ R : ax = b.

This is a true statement, since the unique solution of ax = b is x = b/a ∈
R. Note that we need here to rule out that a = 0.

Be aware: The order of quantifiers matters. The interchange of quanti-
fiers can change completely the meaning of a statement.

Example:

∀a ≥ 0 ∃b ∈ R : b2 = a.

This statement means: For all a ≥ 0 there exists b ∈ R such that b2 = a.
This is obviously a TRUE statement.

But
∃b ∈ R ∀a ≥ 0 : b2 = a

means: There exists b ∈ R such that for all a ≥ 0 we have b2 = a. Here the
claim is that there exists a universal real number b whose square coincides
with every non-negative real number a, which is obviously FALSE.
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Now, we want to discuss a method to negate a statement containing quan-

tifiers. We start with an illustrative example: We consider the statement

∀z ∈ C : zz̄ ∈ R.

This is obviously a TRUE statement. If we would like to show that this
statement is false, we would need to find a complex number z with zz̄ 6∈ R.
Therefore, the negation of this statement claims that there exists a number
z ∈ C with zz̄ 6∈ R:

∃z ∈ C : zz̄ 6∈ R.

The general rules for negating statement containing quantifiers are as
follows:

(a) Replace ∀ by ∃ and replace ∃ by ∀. (Careful: this does not work for
∃!)

(b) Negate the conclusion.

Examples:

(a) Statement A: ”∀a ≥ 0 ∃b ∈ R : b2 = a”

Statement (not A): ”∃a ≥ 0 ∀b ∈ R : b2 6= a”,
meaning: ”There exists a ≥ 0 such that we have for all b ∈ R: b2 6= a.”

(b) Let f : R → R be a given function.

Statement B: ”∀x1, x2 ∈ R with f(x1) = f(x2) : x1 = x2”,
meaning: ”For all x1, x2 ∈ R with f(x1) = f(x2), we have x1 = x2.” In
short: f is injective.

Statement (not B): ”∃x1, x2 ∈ R with f(x1) = f(x2) : x1 6= x2”,
meaning: ”There exist x1, x2 ∈ R with f(x1) = f(x2) satisfying x1 6=
x2.” In short: There are two different x1, x2 ∈ R with f(x1) = f(x2),
i.e., f is not injective.

Finally, we introduce arbitrary unions and intersections. Let us start with
a notation for the intersection of finitely many sets with indices: We write

Z1 ∪ Z2 ∪ · · · ∪ Zk =
⋃

j∈{1,2,...,k}

Zj ,

Z1 ∩ Z2 ∩ · · · ∩ Zk =
⋂

j∈{1,2,...,k}

Zj .
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Here the index set is X = {1, 2, . . . , k}, but it can be anything, for example
X = {a, b, c}, and then we have

⋃

x∈X

Zx = Za ∪ Zb ∪ Zc.

Note that an element in
⋂

x∈X Zx must belong to each of the sets Zx, while
an element in

⋃

x∈X Zx must only belong to at least one of the sets Zx, i.e.,

⋃

j∈{1,2,...,k}

Zj = {z | ∃j ∈ {1, 2, . . . , k} : z ∈ Zj}, (2)

⋂

j∈{1,2,...,k}

Zj = {z | ∀j ∈ {1, 2, . . . , k} : z ∈ Zj}. (3)

The description of
⋃

Zx and
⋂

Zx with ∃, ∀-quantifiers in (2) and (3) allows
even to extend the definition to infinite index sets. We generally define for
finite and infinite index sets X , indexing a family of sets Zx, the union and
intersection of these sets by

⋃

x∈X

Zx = {z | ∃x ∈ X : z ∈ Zx},

⋂

x∈X

Zx = {z | ∀x ∈ X : z ∈ Zx}.

Examples:

•
⋃

k∈Z

(k, k+1) = R\Z: Every x ∈ R\Z lies in one of the intervals (k, k+1).

On the other hand, the integers do not lie in this union, since none of
these intervals contains an integer.

•
⋂

p prime

{kp | k ∈ N} = ∅, since every natural number n has only finitely

many primes dividing it, but there are infinitely many primes.

Assume Zx are sets indexed by x ∈ X , and that the sets Zx are all subsets
of a larger set Z, so that we can take complements in Z. Then we have the
following ”general” De Morgan Rule for arbitrarily many sets:

(

⋂

x∈X

Zx

)c

=
⋃

x∈X

Zc
x.
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Here is the proof:

(

⋂

x∈X

Zx

)c

= {z ∈ Z | ∀x ∈ X : z ∈ Zx}
c

= {z ∈ Z | not(∀x ∈ X : z ∈ Zx)}

= {z ∈ Z | ∃x ∈ X : z 6∈ Zx}

= {z | ∃x ∈ X : (z ∈ Z and z 6∈ Zx)}

= {z | ∃x ∈ X : z ∈ Zc
x}

=
⋃

x∈X

Zc
x.

5


