Lecture 4

In the last lecture we introduced mathematical structure elements and dis-
cussed how to write a proper mathematical text. In this lecture, we will con-
tinue with a bit more logic, in particular quantifiers and negations and
with infinite unions and intersections of sets.

First, recall De Morgan’s Rule for statements:

not (Aor B) < (not A) and (not B).

There is an analogous statement for sets: Assuming X,Y C Z. Then we
have (X UY)® = X°NYe*. Here is the Venn Diagram for illustration:
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For the proof that both sets are equal, we use arguments from logic:

re(XUY) & xzeZ\(XUY)

xr € Zand not(zx € X UY)

r € Zand not(zr € X orz €Y)

z € Z and [(not x € X) and (not xz € Y)] (1)
(reZand (x ¢ X)) and (r € Z and (x €Y))
(reZand (¢ X)) and (r € Z and (x €Y))

(r € X°) and (z € Y°)

reX°NnYe
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Note that we used De Morgan’s Rule at (1).

In fact, the expression "z € (X UY)” is a so-called open statement, since
its truth value can only be determined once we choose an explicit object for
x and specify the sets X and Y explicitly. We consider z, X, Y as variables of
the open statement which can be specified. Open statements contain those
variables and become proper statements, once these variables are explicitly
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chosen. Logic works also for open statements. Here are examples of other
”open statements”:

A(n) means n is a square of an integer,
B(z,y) means z*+y?>1,
C(z,X,Y) means z € X\Y.
Then the statements A(4), B(1,—1), C(1/2,Q, N) are true, and the state-
ments A(w), B(0,0) are false.

Next, we introduce a bit more of notation, Quantifiers:

e V stands for "for all”
e - stands for "there exists”

e ! stands for "there exists a unique”

Quantifiers can be combined nicely with open statements.

Example:

Va € R\{0} YVboeR JlzeR: ax =0

This is a true statement, since the unique solution of ax =bis x = b/a €
R. Note that we need here to rule out that a = 0.

Be aware: The order of quantifiers matters. The interchange of quanti-
fiers can change completely the meaning of a statement.

Example:

Va>0 FbeR: b = a.

This statement means: For all a > 0 there exists b € R such that > = a.
This is obviously a TRUE statement.

But
dbeR Va>0: ¥ =a

means: There exists b € R such that for all @ > 0 we have b*> = a. Here the
claim is that there exists a universal real number b whose square coincides
with every non-negative real number a, which is obviously FALSE.



Now, we want to discuss a method to negate a statement containing quan-
tifiers. We start with an illustrative example: We consider the statement

V2eC:zzeR.

This is obviously a TRUE statement. If we would like to show that this
statement is false, we would need to find a complex number z with 2z ¢ R.

Therefore, the negation of this statement claims that there exists a number
z € C with zz € R:

Jz2eC:zz¢R.

The general rules for negating statement containing quantifiers are as
follows:

(a)

(b)

Replace V by 3 and replace 3 by V. (Careful: this does not work for
an

Negate the conclusion.

Examples:

(a)

(b)

Statement A: "Va >0 dbeR: b =a”

Statement (not A): "da >0 Vbe R: b #£a”,
meaning: ” There exists a > 0 such that we have for all b € R: 0* # a.”

Let f: R — R be a given function.

Statement B: "Vq,x9 € R with f(z1) = f(22) : 1 = 257,

meaning: ”"For all x1, 25 € R with f(z1) = f(z3), we have 1 = z5.” In
short: f is injective.

Statement (not B): "3z, x0 € R with f(z1) = f(xe) : a1 # 237,
meaning: ”"There exist x1, 29 € R with f(x1) = f(z2) satisfying z; #
x9.” In short: There are two different z1, 9 € R with f(z1) = f(x2),
i.e., f is not injective.

Finally, we introduce arbitrary unions and intersections. Let us start with
a notation for the intersection of finitely many sets with indices: We write

ZlLJZQUUZk = U Zj7
je{1,2,....k}

HZNZn--nZe = (] Z
je{1,2,....k}



Here the index set is X = {1,2,...,k}, but it can be anything, for example
X ={a,b,c}, and then we have

UszZaUZbUZC.

zeX

Note that an element in (1), y Z, must belong to each of the sets Z,, while
an element in (J,. v Z, must only belong to at least one of the sets Z,, i.e.,

U 2z = {z13e{1.2,...,k}:z€ 2}, (2)
je{1,2,...k}

( Z = {zIVje{l.2,.. . k}:z€Z} (3)
je{1,2,...,k}

The description of | J Z, and () Z, with 3, V-quantifiers in (2) and (3) allows
even to extend the definition to infinite index sets. We generally define for
finite and infinite index sets X, indexing a family of sets Z,, the union and
intersection of these sets by

UZ:” = {z|dreX:zeZ,},

ﬂZx = {z|VeeX: zeZ,}.

Examples:

. U(k:, k+1) = R\Z: Every € R\Z lies in one of the intervals (k, k+1).

keZ
On the other hand, the integers do not lie in this union, since none of

these intervals contains an integer.

. n {kp | k € N} = (), since every natural number n has only finitely

p prime
many primes dividing it, but there are infinitely many primes.

Assume Z, are sets indexed by x € X, and that the sets Z, are all subsets
of a larger set Z, so that we can take complements in Z. Then we have the
following ”general” De Morgan Rule for arbitrarily many sets:

(ﬂ ZQC)C: U z.

zeX zeX



Here is the proof:
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{reZ|VveX:zeZ}°

{z€Z|notVe e X : 2z € Z,)}
{reZ|IxeX:2¢Z,}
{z|FxeX:(z€Zand 2 ¢ Z,)}
{z|FxeX: :z€Z;}
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