Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 9
7.12.2011

1. Note that

$$
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\frac{\partial f}{\partial x_{3}} d x_{3} .
$$

On the other hand, we have

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial x_{3}}\right),
$$

i.e.,

$$
\omega_{\nabla f}=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\frac{\partial f}{\partial x_{3}} d x_{3} .
$$

Next, note for a vector field $F=\left(f_{1}, f_{2}, f_{3}\right)$ we have

$$
\operatorname{curl} F=\left(\frac{\partial f_{3}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{3}}, \frac{\partial f_{1}}{\partial x_{3}}-\frac{\partial f_{3}}{\partial x_{1}}, \frac{\partial f_{2}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{2}}\right),
$$

i.e.,

$$
\eta_{\text {curl } F}=\left(\frac{\partial f_{3}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{3}}\right) d x_{2} \wedge d x_{3}+\left(\frac{\partial f_{1}}{\partial x_{3}}-\frac{\partial f_{3}}{\partial x_{1}}\right) d x_{3} \wedge d x_{1}+\left(\frac{\partial f_{2}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{2}}\right) d x_{1} \wedge d x_{2} .
$$

On the other hand, since $\omega_{F}=f_{1} d x_{1}+f_{2} d x_{2}+f_{3} d x_{3}$,

$$
d \omega_{F}=\left(\frac{\partial f_{1}}{\partial x_{2}} d x_{2}+\frac{\partial f_{1}}{\partial x_{3}} d x_{3}\right) \wedge d x_{1}+\left(\frac{\partial f_{2}}{\partial x_{1}} d x_{1}+\frac{\partial f_{2}}{\partial x_{3}} d x_{3}\right) \wedge d x_{2}+\left(\frac{\partial f_{3}}{\partial x_{1}} d x_{1}+\frac{\partial f_{3}}{\partial x_{2}} d x_{2}\right) \wedge d x_{3},
$$

which shows $\eta_{\text {curl } F}=d \omega_{F}$, after rearranging the latter expression and using the fact that $d x_{i} \wedge d x_{j}=-d x_{j} \wedge d x_{i}$. Finally, for $F=\left(f_{1}, f_{2}, f_{3}\right)$ and $\eta_{F}=f_{1} d x_{2} \wedge d x_{3}+f_{2} d x_{3} \wedge d x_{1}+f_{3} d x_{1} \wedge d x_{2}$, we obtain

$$
d \eta_{F}=\frac{\partial f_{1}}{\partial x_{1}} d x_{1} \wedge d x_{2} \wedge d x_{3}+\frac{\partial f_{2}}{\partial x_{2}} d x_{2} \wedge d x_{3} \wedge d x_{1}+\frac{\partial f_{3}}{\partial x_{3}} d x_{3} \wedge d x_{1} \wedge d x_{2}
$$

i.e.,

$$
d \eta_{F}=\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}+\frac{\partial f_{3}}{\partial x_{3}}\right) d x_{1} \wedge d x_{2} \wedge d x_{3}=\operatorname{div} F d x_{1} \wedge d x_{2} \wedge d x_{3}
$$

The above calculations show that the following diagram commutes:

Here, $\mathcal{X}(U)$ denotes the space of smooth vector fields on $U \subset \mathbb{R}^{n}$, and the vertical maps Φ_{i} are bijective maps between functions/vector fields and differential forms and defined as follows:

$$
\Phi_{0}(f)=f, \quad \Phi_{1}(F)=\omega_{F}, \quad \Phi_{2}(F)=\eta_{F}, \quad \Phi_{3}(f)=f d x_{1} \wedge d x_{2} \wedge d x_{3} .
$$

Since the vertical maps are bijective, we see that $d^{2}=0$ translates into $\operatorname{curl} \circ \nabla=0$ and div $\circ \operatorname{curl}=0$.
2. (a) We have

$$
\begin{aligned}
& \left|\int_{c} \omega\right|=\left|\int_{a}^{b} \omega_{c(t)}\left(c^{\prime}(t)\right) d t\right| \leq \int_{a}^{b}\left|\left\langle F_{\omega}(c(t)), c^{\prime}(t)\right\rangle\right| d t \leq \\
& \quad \leq \int_{a}^{b}\left\|F_{\omega}(c(t))\right\| \cdot\left\|c^{\prime}(t)\right\| d t \leq M \int_{a}^{b}\left\|c^{\prime}(t)\right\| d t=M L(c)
\end{aligned}
$$

(b) According to Proposition 5.13, we only habe to prove that we have $\int_{c} \omega=0$ for all closed curves $c:[a, b] \rightarrow \mathbb{R}^{n}-0$. Choose $M>0$ and $r>0$ such that $\left\|F_{\omega}(x)\right\| \leq M$ for all $\|x\| \leq r$. Let $\epsilon>0$ be arbitrary. We consider the free homotopy $G:[a, b] \times[\epsilon, 1] \rightarrow \mathbb{R}^{n}-0$, defined by $G(t, s)=s \cdot c(t)$. Since G is a free homotopy and ω is closed, we conclude that

$$
\int_{c} \omega=\int_{c_{\epsilon}} \omega
$$

by Corollary 6.13. Note also that $L\left(c_{\epsilon}\right)=\epsilon \cdot L(c)$, since $c_{\epsilon}^{\prime}(t)=\epsilon c^{\prime}(t)$. This implies with (a) that

$$
\left|\int_{c} \omega\right|=\left|\int_{c_{\epsilon}} \omega\right| \leq M \cdot L\left(c_{\epsilon}\right)=\epsilon \cdot M \cdot L(c) .
$$

Since $\epsilon>0$ was arbitrary, we must have $\int_{c} \omega=0$. This is what we wanted to show.
(c) Note that $F_{\omega}(x, y)=\left(-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)$ and

$$
\left\|F_{\omega}(0, y)\right\|=\frac{1}{|y|}
$$

Note that $1 /|y|$ is not bounded for any disk of centre 0 , so we cannot apply (b) in this case.
3. (a) Since $c_{x}^{\prime}(t)=x=\left(x_{1}, x_{2}\right)$, we have

$$
\begin{gathered}
f(x)=\int_{c_{x}} \omega=\int_{0}^{1} \omega_{c_{x}(t)}\left(c_{x}^{\prime}(t)\right) d t=\int_{0}^{1} f_{1}\left(c_{x}(t)\right) d x_{1}\left(c_{x}^{\prime}(t)\right)+f_{2}\left(c_{x}(t)\right) d x_{2}\left(c_{x}^{\prime}(t)\right)= \\
\int_{0}^{1} f_{1}\left(t x_{1}, t x_{2}\right) x_{1}+f_{2}\left(t x_{1}, t x_{2}\right) x_{2} d t
\end{gathered}
$$

(b) Since $\omega=f_{1} d x_{1}+f_{2} d x_{2}$ is closed, we have $\frac{\partial f_{1}}{\partial x_{2}}=\frac{\partial f_{2}}{\partial x_{1}}$. Using this, we
obtain

$$
\begin{aligned}
\frac{\partial f}{\partial x_{1}}(x) & =\int_{0}^{1} \frac{\partial}{\partial x_{1}}\left(f_{1}\left(t x_{1}, t x_{2}\right) x_{1}+f_{2}\left(t x_{1}, t x_{2}\right) x_{2}\right) d t \\
& =\int_{0}^{1}\left(t \frac{f_{1}}{\partial x_{1}}\left(t x_{1}, t x_{2}\right) x_{1}+f_{1}\left(t x_{1}, t x_{2}\right)+t \frac{f_{2}}{\partial x_{1}}\left(t x_{1}, t x_{2}\right) x_{2}\right) d t \\
& =\int_{0}^{1}\left(t \frac{f_{1}}{\partial x_{1}}\left(t x_{1}, t x_{2}\right) x_{1}+t \frac{f_{1}}{\partial x_{2}}\left(t x_{1}, t x_{2}\right) x_{2}\right) d t+\int_{0}^{1} f_{1}\left(t x_{1}, t x_{2}\right) d t \\
& =\int_{0}^{1} t\left\langle\nabla f\left(c_{x}(t)\right), c_{x}^{\prime}(t)\right\rangle d t+\int_{0}^{1} f_{1}\left(c_{x}(t)\right) d t \\
& =\int_{0}^{1} t D f_{1}\left(c_{x}(t)\right)\left(c_{x}^{\prime}(t)\right) d t+\int_{0}^{1} f_{1}\left(c_{x}(t)\right) d t \\
& =\int_{0}^{1} t\left(f_{1} \circ c_{x}\right)^{\prime}(t)+f_{1} \circ c_{x}(t) d t,
\end{aligned}
$$

where in the last step we applied the chain rule. Partial integration yields

$$
\frac{\partial f}{\partial x_{1}}(x)=\left[t f_{1} \circ c_{x}(t)\right]_{0}^{1}-\int_{0}^{1} f_{1} \circ c_{x}(t) d t+\int_{0}^{1} f_{1} \circ c_{x}(t) d t=1 \cdot f_{1}(x)-0 \cdot f_{1}(0)=f_{1}(x) .
$$

Similarly, one shows $\frac{\partial f}{\partial x_{2}}(x)=f_{2}(x)$, and we conclude that

$$
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}=f_{1} d x_{1}+f_{2} d x_{2}=\omega,
$$

i.e., ω is exact.

