Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 8
30.11.2011

1. Since the columns a_{1}, \ldots, a_{n} of A are linear independent, they form a basis of \mathbb{R}^{n}. Thus a given $b \in \mathbb{R}^{n}$ can be expressed as a linear combination of these columns, i.e., there exist coefficients $x^{1}, \ldots, x^{n} \in \mathbb{R}$ such that

$$
b=\sum_{j} x^{j} a_{j} .
$$

Using this identity, we calculate $\operatorname{det} A_{i}:=\operatorname{det}\left(a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{n}\right)$: By multilinearity we have

$$
\begin{aligned}
\operatorname{det} A_{i} & =\operatorname{det}\left(a_{1}, \ldots, a_{i-1}, \sum_{j} x^{j} a_{j}, a_{i+1}, \ldots, a_{n}\right) \\
& =\sum_{j} x^{j} \operatorname{det}\left(a_{1}, \ldots, a_{i-1}, a_{j}, a_{i+1}, \ldots, a_{n}\right)
\end{aligned}
$$

Since the determinant is alternating, we have

$$
\operatorname{det}\left(a_{1}, \ldots, a_{i-1}, a_{j}, a_{i+1}, \ldots, a_{n}\right)=0
$$

for all $j \neq i$, and

$$
\operatorname{det}\left(a_{1}, \ldots, a_{i-1}, a_{j}, a_{i+1}, \ldots, a_{n}\right)=\operatorname{det} A
$$

for $j=i$. Therefore, we obtain

$$
\operatorname{det} A_{i}=x^{i} \operatorname{det} A
$$

Note that $\operatorname{det} A \neq 0$, so $x^{i}=\operatorname{det} A_{i} / \operatorname{det} A$.
This shows that if $b=\sum_{j} x^{j} a_{j}=A x$, then the coefficients x^{i} can be gained back via the formula $x^{i}=\operatorname{det} A_{i} / \operatorname{det} A$, proving Cramer's Rule.
2. The first part of the exercise boils down to

$$
\begin{aligned}
v \times w & =\left(d x_{2} \wedge d x_{3}(v, w), d x_{3} \wedge d x_{1}(v, w), d x_{1} \wedge d x_{2}(v, w)\right)^{\top} \\
& =\left(v_{2} w_{3}-w_{2} v_{3}, v_{3} w_{1}-w_{3} v_{1}, v 1 w 2-w 1 v 2\right)^{\top},
\end{aligned}
$$

which is obviously correct. For the second part of the exercise, write

$$
\omega=f_{1} d x_{2} \wedge d x_{3}+f_{2} d x_{3} \wedge d x_{1}+f_{3} d x_{1} \wedge d x_{2}
$$

with

$$
f_{i}=\frac{x_{i}}{\left(x_{1}^{2}+x_{2}^{2}+x_{3}\right)^{3 / 2}}
$$

This implies

$$
d \omega=\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}+\frac{\partial f_{3}}{x_{3}}\right) d x_{1} \wedge d x_{2} \wedge d x_{3} .
$$

Since

$$
\frac{\partial f_{i}}{\partial x_{i}}=\frac{1}{\|x\|^{3}}-\frac{3 x_{i}^{2}}{\|x\|^{5}},
$$

we conclude that

$$
\sum_{i=1}^{3} \frac{\partial f_{i}}{\partial x_{i}}=\frac{3}{\|x\|^{3}}-\frac{3 \sum_{i} x_{i}^{2}}{\|x\|^{5}}=0
$$

i.e., $d \omega=0$.
3. We have

$$
\begin{aligned}
\varphi \wedge \psi & =x^{2} d x \wedge d y \wedge d z \\
\phi \wedge \varphi \wedge \psi & =0 \\
d \varphi & =0 \\
d \psi & =2 d x \wedge d y \wedge d z \\
d \phi & =0
\end{aligned}
$$

