Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 6
16.11.2011

1. We conclude from $f(x+h)-f(x)=A h=D f(x) h+R(h)$ that $D f(x)=A$ and $R=0$. Moreover,
$g(x+h)-g(x)=\langle h, A x\rangle+\langle x, A h\rangle+\langle h, A h\rangle=\left\langle\left(A+A^{\top}\right) x, h\right\rangle+\langle h, A h\rangle$ implies that $g(x+h)-g(x)=x^{\top}\left(A+A^{\top}\right) h+R(h)$ with $R(h)=\langle h, A H\rangle$. Since

$$
0 \leq \lim _{h \rightarrow 0} \frac{\|R(h)\|_{2}}{\|h\|_{2}} \leq \lim _{h \rightarrow 0} \frac{\|A\| \cdot\|h\|_{2}^{2}}{\|h\|_{2}}=0,
$$

we see that the error term $R(h)$ behaves the right way and we have $D f(x)=x^{\top}\left(A+A^{\top}\right)$.
2. The statement is false. Choose $c:[0,1] \rightarrow \mathbb{R}^{2}, c(t)=(t, t)$, and $c_{n}:[0,1] \rightarrow \mathbb{R}^{2}$ to be an approximation, which is piecewise defined and looking like a staircase with 2^{n} steps. The functions c, c_{3} and c_{4} are illustrated below. Obviously, we have

$$
\max _{t \in[a, b]}\left\|c(t)-c_{n}(t)\right\|_{2} \rightarrow 0 \quad \text { as } n \rightarrow \infty,
$$

but $L(c)=\sqrt{2}$ and $L\left(c_{n}\right)=2$ for all n.

3. (a) We apply the chain rule to $f(\gamma(t))=c$ and obtain

$$
0=\frac{d}{d t} f(\gamma(t))=D f(\gamma(t))\left(\gamma^{\prime}(t)\right)=\left\langle\nabla f(\gamma(t)), \gamma^{\prime}(t)\right\rangle .
$$

(b) Let $S_{r}=\left\{x \in \mathbb{R}^{2} \mid\|x\|=r\right\}$ and $\gamma:[a, b] \rightarrow S_{r}$ be a curve in the sphere S_{r}. It suffices to show that $g \circ \gamma$ is constant, which is equivalent to

$$
\frac{d}{d t} g(\gamma(t))=0
$$

Using, again, the chain rule, we obtain

$$
\frac{d}{d t} g(\gamma(t))=\left\langle\nabla g(\gamma(t)), \gamma^{\prime}(t)\right\rangle=h(\gamma(t))\left\langle\gamma(t), \gamma^{\prime}(t)\right\rangle
$$

Since $\|\gamma(t)\|^{2}=\langle\gamma(t), \gamma(t)\rangle=r^{2}$, we conclude that

$$
0=\frac{d}{d t}\langle\gamma(t), \gamma(t)\rangle=2\left\langle\gamma(t), \gamma^{\prime}(t)\right\rangle .
$$

Put together, this implies $\frac{d}{d t} g(\gamma(t))=0$, which we wanted to show.
4. Three full turns of the cycloid are illustrated above. Since $c^{\prime}(t)=(r-$ $r \cos (t), r \sin (t))$ we have

$$
\left\|c^{\prime}(t)\right\|^{2}=2 r^{2}(1-\cos (t))=4 r^{2} \sin ^{2}(t / 2)
$$

and the required length is given by

$$
2 r \int_{0}^{2 \pi} \sin (t / 2) d t=4 r \int_{0}^{\pi} \sin (t) d t=8 r
$$

5. We have

$$
\frac{\partial F}{\partial y}(x, y)=4 y\left(1+x^{2}+y^{2}\right),
$$

i.e., $\frac{\partial F}{\partial y}$ vanishes precisely at $y=0$. Looking at the level sets, they have vertical tangents at all points $(x, y)=(x, 0) \neq(0,0)$ and, therefore, the y-coordinate cannot be decribed, locally near these points, as function of the x-coordinate. At $(x, y)=(0,0)$, the lemniscate has a cross-over and, again, it is not possible to describe the y-coordinate of the lemniskate, as a function of the x-coordinate near the origin (every x-value near 0 would correspond to two y-values).
Assuming y as a function of x in a level set (which means we exclude $y=0$), we obtain by differentiation:

$$
0=2\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)-4 x+4 y y^{\prime},
$$

i.e.,

$$
y^{\prime}=\frac{x\left(1-x^{2}-y^{2}\right)}{y\left(1+x^{2}+y^{2}\right)} .
$$

This shows that y^{\prime} vanishes at $x=0$ and at $x^{2}+y^{2}=1$, which describes a unit circle. The picture, again, illustrates that the y-coordinate of the level sets assumes its maximal and minimal value at its intersection with the circle $x^{2}+y^{2}=1$.

6. We have $D f\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}2 x_{1} & 0 \\ 1 & 3 x_{2}^{2}\end{array}\right)$. If f were locally invertible at $x=$ $(0,0), D f(0,0)=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ would have to be an invertible matrix, which it is not. Since $D f(1,1)=\left(\begin{array}{ll}2 & 0 \\ 1 & 3\end{array}\right)$ is invertible, f is locally invertible at $x=(1,1)$, by the Inverse Function Theorem. Moreover,

$$
D f^{-1}(1,2)=D f^{-1}(f(x))=(D f(x))^{-1}=\frac{1}{6}\left(\begin{array}{cc}
3 & 0 \\
-1 & 2
\end{array}\right) .
$$

7. (a) We have

$$
\begin{aligned}
\operatorname{div}(f F)(x)=\sum_{i=1}^{n} \frac{\partial\left(f F_{i}\right)}{\partial x_{i}}(x)= & \sum_{i} \frac{\partial f}{\partial x_{i}} F_{i}(x)+f(x) \frac{\partial F_{i}}{\partial x_{i}}(x) \\
& =\langle\nabla f(x), F(x)\rangle+f(x) \operatorname{div} F(x) .
\end{aligned}
$$

(b) Using the product rule, we obtain

$$
\nabla(f g)(x)=\left(\frac{\partial(f g)}{\partial x_{1}}(x), \ldots, \frac{\partial(f g)}{\partial x_{n}}(x)\right)=f(x) \nabla g(x)+g(x) \nabla f(x) .
$$

This implies with (a)

$$
\Delta(f g)=\operatorname{div} \nabla(f g)=\operatorname{div}(f \nabla g)+\operatorname{div}(g \nabla f)=f \Delta g+2\langle\nabla f, \nabla g\rangle+g \Delta f .
$$

8. (a) f is not a diffeomorphism even though it is bijective: If $\left(x, x+y^{3}\right)=$ $\left(x_{1}, x_{1}+y_{1}^{3}\right)$, then $x=x_{1}$ and $y^{3}=y_{1}^{3}$, and the injectivity follows
from the injectivity of the function $y \mapsto y^{3}$ on the reals. For the surjectivity, we have to solve $\left(x, x+y^{3}\right)=(u, v)$, which yields $x=u$ and $y^{3}=v-u$. The latter has a solution because $y \mapsto y^{3}$ on the reals is surjective. If $(u, v) \neq(0,0)$, then $u \neq 0$ (in which case $x \neq 0$ and $(x, y) \neq(0,0))$ or $u=0$ and $v \neq 0$ (in which case $y^{3}=v \neq 0$ and $(x, y) \neq(0,0))$. But if f were a diffeomorphism, its Jacobi matrix $D f(x, y)$ would have to be invertible for all $(x, y) \neq(0,0)$ (since $\left.(D f(x, y))^{-1}=D f^{-1}(f(x, y))\right)$. we have

$$
D f(x, y)=\left(\begin{array}{cc}
1 & 0 \\
1 & 3 y^{2}
\end{array}\right)
$$

which is obviously not invertible whenever $y=0$.
(b) f is obviously bijective and we have $f^{\prime}(x)=2 x>0$ for all $x \in(0,1)$. The same argument as above shows that f is a diffeomorphism.
(c) f is not a diffeomorphism, since we have $\operatorname{det} \operatorname{Df}(0,0)=0$: Let $t=\tan \left(\frac{\pi}{2}\left(x^{2}+y^{2}\right)\right)$, for simplicity. Then

$$
\begin{aligned}
\frac{\partial f_{1}}{\partial x}(x, y) & =\pi\left(1+t^{2}\right) x^{2}+t \\
\frac{\partial f_{1}}{\partial y}(x, y) & =\pi\left(1+t^{2}\right) x y \\
\frac{\partial f_{2}}{\partial x}(x, y) & =\pi\left(1+t^{2}\right) x y \\
\frac{\partial f_{2}}{\partial y}(x, y) & =\pi\left(1+t^{2}\right) y^{2}+t
\end{aligned}
$$

This implies that $\operatorname{det} D f(x, y)=\pi t\left(1+t^{2}\right)\left(x^{2}+y^{2}\right)+t^{2}$. Note that $t=0$ for $(x, y)=(0,0)$, i.e., $\operatorname{det} D f(0,0)=0$.

