Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 5

1. $\left(x_{n}\right)$ is Cauchy: Note that $\sum_{j=1}^{\infty} \frac{1}{j^{2}}=\frac{\pi^{2}}{6}<\infty$. For every $\epsilon>0$ there is n_{0} such that $\sum_{j=n_{0}}^{\infty} \frac{1}{j^{2}}<\epsilon$ and therefore, for $n, m \geq n_{0}, m \geq n$:
$d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x_{n+1}\right)+\cdots+d\left(x_{m-1}, x_{m}\right) \leq \operatorname{sum}_{j=n}^{m-1} \frac{1}{j^{2}} \leq \operatorname{sum}_{j=n_{0}}^{\infty} \frac{1}{j^{2}}<\epsilon$.
Since (M, d) is complete, $\left(x_{n}\right)$ is convergent.
2. Choose the ray $(x, y)=t(\cos \theta, \sin \theta)$ with $t>0$. Then

$$
f(x, y)=\frac{t^{2} \cos \theta \sin \theta}{t^{2}}=\frac{1}{2} \sin (2 \theta) .
$$

Therefore, we can find rays on which f assumes any fixed value between $-1 / 2$ and $1 / 2$. If f were continuous in the origin, the limit of f along all rays at $(x, y)=0$ would have to be 0 . Contradiction!
The first partial derivatives are obviously well defined at all points $(x, y) \neq$ 0 . Let $(x, y)=0$. Then

$$
\frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0 .
$$

Similarly, $\frac{\partial f}{\partial y}(0,0)=0$. If both partial derivatives would be continuous at $(x, y)=0$, then f would be totally differentiable there and therefore, also continuous. But we showed that f is not continuous at the origin.
3. Let $f, g \in C\left(I_{\epsilon}\right)$. We have

$$
\begin{aligned}
\|T f(t)-T g(t)\| & \leq \int_{t_{0}}^{t}|F(f(s), s)-F(g(s), s)| d s \\
& \leq L \int_{t_{0}}^{t}|f(s)-g(s)| d s \leq L \cdot \epsilon \cdot\|f-g\|_{\infty}
\end{aligned}
$$

This implies that

$$
d_{\infty}(T f, T g)=\|T f-T g\|_{\infty} \leq L \epsilon\|f-g\|_{\infty}=L \epsilon d_{\infty}(f, g) .
$$

If we choose $\epsilon<1 / L$, we see that T is a contraction.
4. We prove the equivalence by $(i) \Rightarrow(i i),(i i) \Rightarrow(i i i)$, and $(i i i) \Rightarrow(i)$: (i) \Rightarrow (ii): Let T be bounded, i.e., $\|T v\|_{W} \leq C\|v\|_{V}$ for all $v \in V$. Let $v_{n} \in V$ with $v_{n} \rightarrow 0$. This means that $\left\|v_{n}\right\|_{V} \rightarrow 0$. We conclude that

$$
\left\|T\left(v_{n}\right)-T(0)\right\|_{W}=\left\|T\left(v_{n}\right)\right\|_{W} \leq C\left\|v_{n}\right\|_{V} \rightarrow 0 .
$$

Continuity at $v=0$ follows now from Proposition 1.24.
$(i i) \Rightarrow(i i i)$: Let T be continuous at 0 . Let $v_{n} \rightarrow v \in V$. Then $v_{n}-v \rightarrow 0$. We know from the continuity at 0 that $T\left(v_{n}-v\right) \rightarrow 0$. But this means that $T\left(v_{n}\right)-T(v) \rightarrow 0$, or $T\left(v_{n}\right) \rightarrow T(v)$. This is continuity at v, again by Proposition 1.24.
(iii) $\Rightarrow(i)$: We prove that the negation of (i) contradicts to the continuity of T. Let T be unbounded. Then there exists a sequence $v_{n} \in V$ with $\left\|v_{n}\right\|_{V} \leq 1$ such that $\left\|T\left(v_{n}\right)\right\| \geq n$. Let $x_{n}=\frac{1}{n} v_{n}$. Then we have $\left\|x_{n}\right\| \leq 1 / n \rightarrow 0$, i.e., $x_{n} \rightarrow 0$. If T were continuous at 0 , we would have $T\left(x_{n}\right) \rightarrow T(0)=0$, and therefore $\left\|T\left(x_{n}\right)\right\|_{W} \rightarrow 0$. But

$$
\left\|T\left(x_{n}\right)\right\|_{W}=\frac{1}{n}\left\|T\left(v_{n}\right)\right\|_{W} \geq 1 .
$$

This is a contradiction.
5. (i) The inequality holds trivially if $\mathbf{x}=0$ or $\mathbf{y}=0$. So we assume that both sequences are not zero. Note that $\sum_{n=1}^{\infty} \xi_{n}=1=\sum_{n=1}^{\infty} \eta_{n}$. Applying (1) to ξ_{n} and η_{n} yields

$$
\frac{1}{\|\mathbf{x}\|_{p} \cdot\|\mathbf{y}\|_{q}} \sum_{n=1}^{\infty}\left|x_{n} y_{n}\right|=\sum_{n} \xi_{n}^{1 / p} \eta_{n}^{1 / q} \leq \sum_{n} \frac{\xi_{n}}{p}+\frac{\eta_{n}}{q}=\frac{1}{p}+\frac{1}{q}=1 .
$$

(ii) We know that $\left(x_{n}+y_{n}\right) \in l_{p}(\mathbb{C})$, i.e., $\sum_{n}\left|x_{n}+y_{n}\right|^{p}<\infty$. Since $\frac{1}{p}+\frac{1}{q}=1$, we conclude that $q=\frac{p}{p-1}$ and

$$
\sum_{n}\left|z_{n}\right|^{q}=\sum_{n}\left(\left|x_{n}+y_{n}\right|^{p-1}\right)^{\frac{p}{p-1}}=\sum_{n}\left|x_{n}+y_{n}\right|^{p}<\infty,
$$

i.e., $\mathbf{z}=\left(z_{n}\right) \in l_{q}(\mathbf{C})$.
(iii) We have

$$
\|\mathbf{x}+\mathbf{y}\|_{p}^{p}=\sum_{n}\left|x_{n}+y_{n}\right| \cdot\left|x_{n}+y_{n}\right|^{p-1} \leq \sum_{n}\left|x_{n}\right| \cdot\left|z_{n}\right|+\sum_{n}\left|y_{n}\right| \cdot\left|z_{n}\right| .
$$

Applying Hölder on the right hand side, we obtain

$$
\|\mathbf{x}+\mathbf{y}\|_{p}^{p} \leq\left(\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{q}\right) \cdot\left(\sum_{n}\left|x_{n}+y_{n}\right|^{(p-1) q}\right)^{1 / q}
$$

Note that $(p-1) q=p$ and $1 / q=(p-1) / p$. Therefore,

$$
\|\mathbf{x}+\mathbf{y}\|_{p}^{p} \leq\left(\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}\right) \cdot\|\mathbf{x}+\mathbf{y}\|_{p}^{p-1} .
$$

Note that if $\|\mathbf{x}+\mathbf{y}\|_{p}=0$, Minkowski's Inequality is trivial. Therefore, we assume that $\|\mathbf{x}+\mathbf{y}\|_{p} \neq 0$, and we can divide the previous inequality by $\|\mathbf{x}+\mathbf{y}\|_{p}^{p-1}$ and obtain

$$
\|\mathbf{x}+\mathbf{y}\|_{p} \leq\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}
$$

Finally, we provide the solutions for the homeworks:
2. (From Exercise Sheet 1) (a) We only need to check for $x_{0}=1-1 / n$ that

$$
\frac{n}{2} x_{0}-\frac{n-1}{2}=0,
$$

and for $x_{1}=1+1 / n$ that

$$
\frac{n}{2} x_{1}-\frac{n-1}{2}=1 .
$$

This is obviously true.
(b) Note that $0 \leq f_{n}(x) \leq 1$ and, consequently $\left|f_{n}(x)-f_{m}(x)\right|^{2} \leq 1$. Moreover, for $n, m \geq n_{0}$, the two functions f_{n}, f_{m} can only differ in the interval ($1-1 / n_{0}, 1+1 / n_{0}$). We obtain

$$
\begin{aligned}
& d\left(f_{n}, f_{m}\right)^{2}=\left\langle f_{n}-f_{m}, f_{n}-f_{m}\right\rangle \\
& \quad=\int_{1-1 / n_{0}}^{1+1 / n_{0}}\left|f_{n}(x)-f_{m}(x)\right|^{2} d x \leq \frac{2}{n_{0}} \rightarrow 0 \quad \text { as } n_{0} \rightarrow \infty .
\end{aligned}
$$

This shows that f_{n} is a Cauchy sequence.
It is convincing that the sequence f_{n}, if convergent, would have to have the limit

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { for } & x \in[0,1) \\
1 & \text { for } & x \in(1,2]
\end{array}\right.
$$

and the value of f at $x=1$ could be anything. But this function would not be continuous and, therefore, V cannot be complete.
2. (From Exercise Sheet 3) Assume f is not uniformly continuous. Then there exists an $\epsilon>0$ such that for every δ there exists a pair $x=x(\delta)$ and $y=y(\delta)$ such that $d(x, y)<\delta$ and $d(f(x), f(y)) \geq \epsilon$. Choosing $\delta=1 / n$, we obtain a sequence x_{n}, y_{n} with $d\left(x_{n}, y_{n}\right)<1 / n$ and $d\left(f\left(x_{n}\right), f\left(y_{n}\right)\right) \geq \epsilon$. Since M is compact, we can choose a convergent subsequence $x_{n_{j}} \rightarrow$ $x_{0} \in M$. Since $d\left(x_{n}, y_{n}\right)<1 / n$, we also have $y_{n_{j}} \rightarrow x_{0} \in M$. Since f is continuous in x_{0}, there exists a δ_{0} such that $d\left(f\left(x_{0}\right), f(y)\right)<\epsilon / 2$ for all $y \in M$ with $d\left(x_{0}, y\right)<\delta_{0}$. Since both $x_{n_{j}}$ and $y_{n_{j}}$ converge to x_{0}, there must exist a j_{0} such that $d\left(x_{0}, x_{n_{j}}\right)<\delta_{0}$ and $d\left(x_{0}, y_{n_{j}}\right)<\delta_{0}$ for all $j \geq j_{0}$. This implies, for $j \geq j_{0}$,
$\epsilon \leq d\left(f\left(x_{n_{j}}\right), f\left(y_{n_{j}}\right)\right) \leq d\left(f\left(x_{n_{j}}\right), f\left(x_{0}\right)\right)+d\left(f\left(x_{0}\right), f\left(y_{n_{j}}\right)\right)<\epsilon / 2+\epsilon / 2=\epsilon$,
a contradiction.

