Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 4

1. We have to check the norm axioms. Firstly, $\|x\|=0$ is equivalent to $\|x\|_{1}=0$ and $\|x\|_{2}=0$, which is true iff $x=0$. Secondly,

$$
\begin{aligned}
\|\lambda x\| & =\alpha|\lambda|\|x\|_{1}+\beta|\lambda|\|x\|_{2} \\
& =|\lambda|\left(\alpha\|x\|_{1}+\beta\|x\|_{2}\right)=|\lambda|\|x\| .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\|x+y\| & \leq \alpha\left(\|x\|_{1}+\|y\|_{1}\right)+\beta\left(\|x\|_{2}+\|y\|_{2}\right) \\
& =\left(\alpha\|x\|_{1}+\beta\|x\|_{2}\right)+\left(\alpha\|y\|_{1}+\beta\|y\|_{2}\right)=\|x\|+\|y\| .
\end{aligned}
$$

For the concrete norm we have the equivalences

$$
\begin{aligned}
\|x\| \leq 1 \Leftrightarrow & \frac{1}{3}\left(\left|x_{1}\right|+\left|x_{2}\right|\right)+\frac{2}{3}\left|x_{1}\right| \leq 1 \text { and } \\
& \frac{1}{3}\left(\left|x_{1}\right|+\left|x_{2}\right|\right)+\frac{2}{3}\left|x_{2}\right| \leq 1 \\
\Leftrightarrow & 3\left|x_{1}\right|+\left|x_{2}\right| \leq 3 \text { and }\left|x_{1}\right|+3\left|x_{2}\right| \leq 3
\end{aligned}
$$

so the shape of the unit ball looks as follows (shaded area):

2. Let $A_{n}:=\sum_{k=1}^{n} a_{k}$. If A_{n} is convergent, then it is a Cauchy. This means that for every $\epsilon>0$ there exists n_{0} such that for all $n \geq m \geq n_{0}$:

$$
\nu_{p}\left(A_{n}-A_{m}\right)<\epsilon .
$$

This shows that, in particular, $\nu_{p}\left(a_{m+1}\right)=\nu_{p}\left(A_{m+1}-A_{m}\right)<\epsilon$, for all $m \geq n_{0}$, which means $a_{k} \rightarrow 0$. Conversely, let us assume that $a_{k} \rightarrow 0$. We need to show that A_{n} is Cauchy. We conclude from the strong triangle inequality that

$$
\nu_{v}\left(A_{n}-A_{m}\right)=\nu_{v}\left(\sum_{k=m+1}^{n} a_{k}\right) \leq \max \left\{\nu_{p}\left(a_{m+1}\right), \nu_{p}\left(a_{m+1}\right), \ldots \nu_{p}\left(a_{n}\right)\right\} .
$$

For every $\epsilon>0$, there exists n_{0} such that $\nu_{p}\left(a_{n}\right)<\epsilon$ for all $n \geq n_{0}$. This implies that, for all $n>m \geq n_{0}$:

$$
\nu_{v}\left(A_{n}-A_{m}\right)<\epsilon,
$$

i.e., A_{n} is Cauchy.
3. It is easy to see that $\mathcal{B}(V, W)$ is a vector space and that the operator norm is actually a norm on this vector space. We focus on proving that if $T_{n} \in \mathcal{B}(V, W)$ is a Cauchy sequence, then there exists an operator $T \in \mathcal{B}(V, W)$ such that $T_{n} \rightarrow T$, i.e., $\left\|T_{n}-T\right\| \rightarrow 0$. We first have to define the limit operator $T: V \rightarrow W$. Let $v \in V$. Then $w_{n}:=T_{n} v \in W$ is a Cauchy sequence because of

$$
\left\|w_{n}-w_{m}\right\|_{W}=\left\|T_{n} v-T_{m} v\right\|_{W} \leq\left\|T_{n}-T_{m}\right\| \cdot\|v\|_{V}
$$

and the fact that T_{n} is a Cauchy sequence. Since $\left(W,\|\cdot\|_{W}\right)$ is a Banach space, $w_{n} \in W$ must be convergent and we define

$$
T v=\lim _{n \rightarrow \infty} w_{n}=\lim _{n \rightarrow \infty} T_{n} v .
$$

This defined the operator T pointwise. Let us first check that T is linear:

$$
\begin{aligned}
T\left(v_{1}+v_{2}\right) & =\lim T_{n}\left(v_{1}+v_{2}\right)=\lim T_{n} v_{1}+T_{n} v_{2} \\
& =\lim T_{n} v_{1}+\lim T_{n} v_{2}=T v_{1}+T v_{2}, \\
T(\lambda v) & =\lim T_{n}(\lambda v)=\lim \lambda T_{n}(v)=\lambda \lim T_{n}(v)=\lambda T v .
\end{aligned}
$$

Next, we need to show that T is bounded. Since T_{n} is a Cauchy sequence, T_{n} is bounded (see Exercise 3 on Sheet 1), i.e., there exists $C>0$ such that $\left\|T_{n}\right\| \leq C$ for all n. Let $v \in V$ with $\|v\|_{V} \leq 1$. Since $T_{n} v \rightarrow T v$ there exists n_{0} such that $\left\|T v-T_{n_{0}} v\right\|_{W}<1$. This implies that

$$
\|T v\|_{W} \leq\left\|T v-T_{n_{0}} v\right\|_{W}+\left\|T_{n_{0}} v\right\|_{W}<1+\left\|T_{n_{0}}\right\| \cdot\|v\|_{V} \leq 1+C,
$$

i.e., $T \in \mathcal{B}(V, W)$. It only remains to show that $T_{n} \rightarrow T$. Let $\epsilon>0$ be given. Since T_{n} is a Cauchy sequence, there exists a n_{0} such that $\left\|T_{n}-T_{m}\right\|<\epsilon / 2$ for all $n, m \geq n_{0}$. Let $v \in V$ with $\|v\|_{V} \leq 1$. Since $T_{n} v \rightarrow T v$, there exists $n_{0}(v)$ such that $\left\|T_{n} v-T v\right\|_{W}<\epsilon / 2$ for all $n \geq n_{0}(v)$. We can assume, without loss of generality, that $n_{0}(v) \geq n_{0}$. Then we have for all $n \geq n_{0}$:

$$
\begin{aligned}
\left\|T v-T_{n} v\right\|_{W} & \leq\left\|T v-T_{n_{0}(v)} v\right\|_{W}+\left\|T_{n_{0}(v)} v-T_{n} v\right\|_{W} \\
& <\epsilon / 2+\left\|T_{n_{0}(v)}-T_{n}\right\| \cdot\|v\|_{V}<\epsilon / 2+\epsilon / 2 \cdot 1=\epsilon .
\end{aligned}
$$

This shows that $\left\|T-T_{n}\right\|<\epsilon$ for all $n \geq n_{0}$, i.e., $T_{n} \rightarrow T$.
4. (i) Let $f(x)=\frac{1}{e^{c b}} e^{C x}$. Then $\|f\|_{\infty}=1$ and $f^{\prime}(x)=C f(x)$. Therefore, we have

$$
\|D f\|_{\infty}=C .
$$

Since $C>0$ can be arbitrarily, D is unbounded.
(ii) The fastest way to show boundedness of the restricted operator D is to identify $P_{k}[a, b]$ with the vector space \mathbb{R}^{k+1} via

$$
a_{k} x^{k}+\cdots+a_{1} x+a_{0} \mapsto\left(a_{k}, \ldots, a_{1}, a_{0}\right) .
$$

By this identification, D translates into the linear operator

$$
D\left(a_{k}, \ldots, a_{1}, a_{0}\right)=\left(0, k a_{k}, \ldots, 2 a_{2}, a_{1}\right),
$$

which can be written as a matrix, if required. Since all norms in \mathbb{R}^{k+1} are equivalent and every matrix is a bounded operator with respect to any norm, we conclude that D is bounded on $P_{k}[a, b]$.
(iii) Let $f \in C^{1}[a, b]$ be a non-vanishing constant function. Then $\|f\|_{*}=$ 0 , but $f \neq 0$, a contradiction to the norm axioms.
(iv) This is not a norm on $C[0,1]$ for similar reasons as in (iii). Choose a non-vanishing continuous function f on $[0,1]$ which vanishes at the $k+1$ points $\frac{j}{k}$ for $j=0,1, \ldots, k$. Then $\|f\|_{\Delta}=0$ but $f \neq 0$. Such an example does not exist for polynomials of degree $\leq k$. If $p \in P_{k}[0,1]$ and $\|p\|_{\Delta}=0$, we conclude that p has $k+1$ distinct zeroes on the real line. Since p is of degree k, it cannot have more than k zeros, unless it is identically zero. This shows $\|p\|_{\Delta}=0 \Leftrightarrow p=0$ in $P_{k}[0,1]$. The other norm axioms are easily checked.
(v) The norm axioms are easily checks, only $\|f\|_{c^{1}}=0 \Leftrightarrow f=0$ needs to be considered. But this follows immediately from $\|f\|_{\infty}=0 \Leftrightarrow$ $f=0$. The boundedness of D is shown as follows: Let $f \in C^{1}[a, b]$ with $\|f\|_{C^{1}} \leq 1$. Then

$$
\|D(f)\|_{\infty}=\left\|f^{\prime}\right\|_{\infty} \leq\|f\|_{C^{1}} \leq 1
$$

i.e., D is bounded.
(iv) The norm axioms are easily checked, only $\|f\|_{\diamond}=0 \Leftrightarrow f=0$ needs consideration. If $\|f\|_{\diamond}=0$ we have $f^{\prime}=0$. Since $[a, b]$ is a connected set, f must be a constant function. Since $f(a)=0, f$ must vanish everywhere. This shows $f=0$. The converse direction is trivial.
5. (i) Look at $g(x)=f(x)-x$. Then $g(a) \geq 0$ and $g(b) \leq 0$, so there must be $x \in[a, b]$ with $g(x)=0$. This implies $f(x)=x$.
(ii) Since $\left|f^{\prime}(x)\right|<1$ for all $x \in[a, b]$ and $\left\|f^{\prime}(x)\right\|$ is continuous on $[a, b]$, it attains a maximum M on $[a, b]$ with $M<1$. Using the Mean Value Theorem, we obtain

$$
\|f(x)-f(y)\| \leq\left\|f^{\prime}(\xi)\right\| \cdot|x-y| \leq M \cdot|x-y|,
$$

for some ξ between x and y. This means that $f:[a, b] \rightarrow[a, b]$ is a contraction on the complete metric space

$$
(M, d)=([a, b], d(x, y)=|x-y|) .
$$

The statement of the exercise is then just an application of the Contraction Mapping Principle.
(iii) Choose $f(x)=a+b-x$. Then $f^{\prime}(x)=-1$. Choose, e.g., $x_{0}=a$, then we have $x_{n}=b$ for all odd n and $x_{n}=a$ for all even n.

