
Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 4 31.10.2011

1. We have to check the norm axioms. Firstly, ‖x‖ = 0 is equivalent to
‖x‖1 = 0 and ‖x‖2 = 0, which is true iff x = 0. Secondly,

‖λx‖ = α|λ|‖x‖1 + β|λ|‖x‖2

= |λ| (α‖x‖1 + β‖x‖2) = |λ|‖x‖.

Finally,

‖x + y‖ ≤ α(‖x‖1 + ‖y‖1) + β(‖x‖2 + ‖y‖2)

= (α‖x‖1 + β‖x‖2) + (α‖y‖1 + β‖y‖2) = ‖x‖ + ‖y‖.

For the concrete norm we have the equivalences

‖x‖ ≤ 1 ⇔
1

3
(|x1| + |x2|) +

2

3
|x1| ≤ 1 and

1

3
(|x1| + |x2|) +

2

3
|x2| ≤ 1

⇔ 3|x1| + |x2| ≤ 3 and |x1| + 3|x2| ≤ 3,

so the shape of the unit ball looks as follows (shaded area):
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2. Let An :=
∑n

k=1 ak. If An is convergent, then it is a Cauchy. This means
that for every ǫ > 0 there exists n0 such that for all n ≥ m ≥ n0:

νp(An − Am) < ǫ.



This shows that, in particular, νp(am+1) = νp(Am+1 − Am) < ǫ, for all
m ≥ n0, which means ak → 0. Conversely, let us assume that ak → 0. We
need to show that An is Cauchy. We conclude from the strong triangle
inequality that

νv(An − Am) = νv(

n∑

k=m+1

ak) ≤ max{νp(am+1), νp(am+1), . . . νp(an)}.

For every ǫ > 0, there exists n0 such that νp(an) < ǫ for all n ≥ n0. This
implies that, for all n > m ≥ n0:

νv(An − Am) < ǫ,

i.e., An is Cauchy.

3. It is easy to see that B(V,W ) is a vector space and that the operator
norm is actually a norm on this vector space. We focus on proving that
if Tn ∈ B(V,W ) is a Cauchy sequence, then there exists an operator
T ∈ B(V,W ) such that Tn → T , i.e., ‖Tn − T‖ → 0. We first have to
define the limit operator T : V → W . Let v ∈ V . Then wn := Tnv ∈ W
is a Cauchy sequence because of

‖wn − wm‖W = ‖Tnv − Tmv‖W ≤ ‖Tn − Tm‖ · ‖v‖V

and the fact that Tn is a Cauchy sequence. Since (W, ‖ · ‖W ) is a Banach
space, wn ∈ W must be convergent and we define

Tv = lim
n→∞

wn = lim
n→∞

Tnv.

This defined the operator T pointwise. Let us first check that T is linear:

T (v1 + v2) = lim Tn(v1 + v2) = lim Tnv1 + Tnv2

= lim Tnv1 + lim Tnv2 = Tv1 + Tv2,

T (λv) = lim Tn(λv) = lim λTn(v) = λ lim Tn(v) = λTv.

Next, we need to show that T is bounded. Since Tn is a Cauchy sequence,
Tn is bounded (see Exercise 3 on Sheet 1), i.e., there exists C > 0 such
that ‖Tn‖ ≤ C for all n. Let v ∈ V with ‖v‖V ≤ 1. Since Tnv → Tv
there exists n0 such that ‖Tv − Tn0

v‖W < 1. This implies that

‖Tv‖W ≤ ‖Tv − Tn0
v‖W + ‖Tn0

v‖W < 1 + ‖Tn0
‖ · ‖v‖V ≤ 1 + C,

i.e., T ∈ B(V,W ). It only remains to show that Tn → T . Let ǫ > 0
be given. Since Tn is a Cauchy sequence, there exists a n0 such that
‖Tn − Tm‖ < ǫ/2 for all n,m ≥ n0. Let v ∈ V with ‖v‖V ≤ 1. Since
Tnv → Tv, there exists n0(v) such that ‖Tnv − Tv‖W < ǫ/2 for all
n ≥ n0(v). We can assume, without loss of generality, that n0(v) ≥ n0.
Then we have for all n ≥ n0:

‖Tv − Tnv‖W ≤ ‖Tv − Tn0(v)v‖W + ‖Tn0(v)v − Tnv‖W

< ǫ/2 + ‖Tn0(v) − Tn‖ · ‖v‖V < ǫ/2 + ǫ/2 · 1 = ǫ.

This shows that ‖T − Tn‖ < ǫ for all n ≥ n0, i.e., Tn → T .



4. (i) Let f(x) = 1
ecb e

Cx. Then ‖f‖∞ = 1 and f ′(x) = Cf(x). Therefore,
we have

‖Df‖∞ = C.

Since C > 0 can be arbitrarily, D is unbounded.

(ii) The fastest way to show boundedness of the restricted operator D
is to identify Pk[a, b] with the vector space R

k+1 via

akx
k + · · · + a1x + a0 7→ (ak, . . . , a1, a0).

By this identification, D translates into the linear operator

D(ak, . . . , a1, a0) = (0, kak, . . . , 2a2, a1),

which can be written as a matrix, if required. Since all norms in
R

k+1 are equivalent and every matrix is a bounded operator with
respect to any norm, we conclude that D is bounded on Pk[a, b].

(iii) Let f ∈ C1[a, b] be a non-vanishing constant function. Then ‖f‖∗ =
0, but f 6= 0, a contradiction to the norm axioms.

(iv) This is not a norm on C[0, 1] for similar reasons as in (iii). Choose a
non-vanishing continuous function f on [0, 1] which vanishes at the
k+1 points j

k
for j = 0, 1, . . . , k. Then ‖f‖△ = 0 but f 6= 0. Such an

example does not exist for polynomials of degree ≤ k. If p ∈ Pk[0, 1]
and ‖p‖△ = 0, we conclude that p has k+1 distinct zeroes on the real
line. Since p is of degree k, it cannot have more than k zeros, unless
it is identically zero. This shows ‖p‖△ = 0 ⇔ p = 0 in Pk[0, 1]. The
other norm axioms are easily checked.

(v) The norm axioms are easily checks, only ‖f‖c1 = 0 ⇔ f = 0 needs
to be considered. But this follows immediately from ‖f‖∞ = 0 ⇔
f = 0. The boundedness of D is shown as follows: Let f ∈ C1[a, b]
with ‖f‖C1 ≤ 1. Then

‖D(f)‖∞ = ‖f ′‖∞ ≤ ‖f‖C1 ≤ 1,

i.e., D is bounded.

(iv) The norm axioms are easily checked, only ‖f‖⋄ = 0 ⇔ f = 0 needs
consideration. If ‖f‖⋄ = 0 we have f ′ = 0. Since [a, b] is a connected
set, f must be a constant function. Since f(a) = 0, f must vanish
everywhere. This shows f = 0. The converse direction is trivial.

5. (i) Look at g(x) = f(x)−x. Then g(a) ≥ 0 and g(b) ≤ 0, so there must
be x ∈ [a, b] with g(x) = 0. This implies f(x) = x.

(ii) Since |f ′(x)| < 1 for all x ∈ [a, b] and ‖f ′(x)‖ is continuous on [a, b],
it attains a maximum M on [a, b] with M < 1. Using the Mean
Value Theorem, we obtain

‖f(x) − f(y)‖ ≤ ‖f ′(ξ)‖ · |x − y| ≤ M · |x − y|,



for some ξ between x and y. This means that f : [a, b] → [a, b] is a
contraction on the complete metric space

(M,d) = ([a, b], d(x, y) = |x − y|).

The statement of the exercise is then just an application of the
Contraction Mapping Principle.

(iii) Choose f(x) = a + b − x. Then f ′(x) = −1. Choose, e.g., x0 = a,
then we have xn = b for all odd n and xn = a for all even n.


