Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 3

1. (a) Assume that $x_{n} \rightarrow x$. Let $\epsilon>0$ be given. Since f is continuous at x, there exists a $\delta 0$ such that $d_{N}(f(x), f(y))<\epsilon$ for all $y \in M$ with $d_{M}(x, y)<\delta$. Since $x_{n} \rightarrow x$, there exists n_{0} such that $d_{M}\left(x_{n}, x\right)<\delta$ for all $n \geq n_{0}$. Therefore, $d_{N}\left(f\left(x_{n}\right), f(x)\right)<\epsilon$ for all $n \geq n_{0}$. But this implies that $f\left(x_{n}\right) \rightarrow f(x)$.
(b) We use sequential compactness. Let $y_{n}=f\left(x_{n}\right) \in f(K)$ with $x_{n} \in$ K. Since K is compact, we have a subsequence $x_{n_{j}} \rightarrow x \in K$. Since f is continuous, we conclude from (a) that $y_{n_{j}}=f\left(x_{n_{j}}\right) \rightarrow$ $f(x) \in f(K)$. But this means that y_{n} has a convergent subsequence in $f(K)$, i.e., $f(K)$ is compact.
(c) Let $x \in f^{-1}(U)$ and $y=f(x) \in U$. Since U is open, there exists a $\epsilon>0$ such that $U_{\epsilon}(y) \subset U$. Since f is continuous, there exists $\delta>0$ such that $d_{N}\left(f(x), f\left(x^{\prime}\right)\right)<\epsilon$ for all $x^{\prime} \in M$ with $d_{M}\left(x, x^{\prime}\right)<\delta$, i.e., $f\left(x^{\prime}\right) \in U_{\epsilon}(y)$ for all $x^{\prime} \in U_{\delta}(x)$, i.e., $f\left(U_{\delta}(x)\right) \subset U_{\epsilon}(y) \subset U$, i.e., $U_{\delta}(x) \subset f^{-1}(U)$. This shows that $f^{-1}(U)$ is open.
(d) Let $A \subset N$ be closed. Then $A^{c}=N \backslash A$ is open and $f^{-1}\left(A^{c}\right) \subset$ M is open, by (c). Since $f^{-1}\left(A^{c}\right)=\left(f^{-1}(A)\right)^{c}$, we conclude that $f^{-1}(A) \subset M$ is closed.
2. Homework! Will be given in a later solution sheet.
3. Let a be the supremum of the set $\{f(x) \mid x \in M\}$. A priori, a can be infinity or a finite real number. There exists a sequence $x_{n} \in M$ such that $f\left(x_{n}\right)$ converges to the supremum. In case that the supremum is infinity, the sequence $f\left(x_{n}\right)$ becomes eventually larger than any positive number. Since M is compact, there exists a convergent subsequence $x_{n_{j}} \rightarrow x \in M$. Since f is continuous, we have $f\left(x_{n_{j}}\right) \rightarrow f(x)$. Since $f(x)$ is a well defined finite number and $f\left(x_{n_{j}}\right)$ converges to the supremum, the supremum is a finite number and is attained at $x \in M$. Similar arguments hold for the infimum. This shows that f has a minimum and a maximum on the set M.
4. We have

$$
\begin{aligned}
\|v+w\|^{2}+\|v-w\|^{2} & =\langle v+w, v+w\rangle+\langle v-w, v-w\rangle \\
& =\|v\|^{2}+\|w\|^{2}+2\langle v, w\rangle+\|v\|^{2}+\|w\|^{2}-2\langle v, w\rangle \\
& =2\left(\|v\|^{2}+\|w\|^{2}\right) .
\end{aligned}
$$

Assume, w.l.o.g., $[a, b]=[0,1]$. Choose, e.g., $f(x)=1$ for all $x \in[0,1]$ and $g(x)=x$ for all $x \in[0,1]$. Then $\|f\|_{\infty}=\|g\|_{\infty}=1,\|f+g\|_{\infty}=2$ and $\|f-g\|_{\infty}=1$, contradicting to the paralellogram equation.
5. Let $v=\sum_{i} a_{i} e_{i}$. Then

$$
\|v\| \leq \sum_{i}\left|a_{i}\right| \cdot\left\|e_{i}\right\| .
$$

Let $M=\max \left\{\left\|e_{1}\right\|, \ldots,\left\|e_{n}\right\|\right\}$, then we obtain with Cauchy-Schwartz inequality $\left(\sum\left|x_{i} y_{i}\right| \leq\left(\sum\left|x_{i}\right|^{2}\right)^{1 / 2}\left(\sum\left|y_{i}\right|^{2}\right)^{1 / 2}\right)$:

$$
\|v\| \leq M \sum_{i}\left|a_{i}\right| \leq M \sqrt{n}\left(\sum_{i}\left|a_{i}\right|^{2}\right)^{1 / 2}=M \sqrt{n}\|v\|_{2} .
$$

So we have $\|\cdot\| \leq C\|\cdot\|_{2}$ with $C=M \sqrt{n}$. Let $x_{n} \rightarrow x_{0}$ in the Euclidean metric, i.e., $\left\|x_{n}-x_{0}\right\|_{2} \rightarrow 0$. This implies that $\left\|x_{n}-x_{0}\right\| \leq C\left\|x_{n}-x_{0}\right\|_{2} \rightarrow$ 0 , as well and, therefore,

$$
\left|\left\|x_{n}\right\|-\left\|x_{0}\right\|\right| \leq\left\|x_{n}-x_{0}\right\| \rightarrow 0 .
$$

This means that $\|\cdot\|: \mathbb{R}^{n} \rightarrow[0, \infty)$ is continuous with respect to the Euclidean metric. By Heine-Borel, S^{n-1} is closed and bounded with respect to the Euclidean metric, therefore compact. Every continuous function assumes its minimum and maximum on a compact set. Let min, max be the minimum and maximum of the map $\|\cdot\|$ on S^{n-1}. We must have $\min >0$, since $\min =0$ would mean that $\|x\|=0$ for a vector in S^{n-1}, but $\|x\|=0$ if and only if $x=0$ (contradiction). We claim that

$$
\min \|v\|_{2} \leq\|v\| \leq \max \|v\|_{2} .
$$

This is obviously true for $v=0$. Let $v \neq 0$. Then $v /\|v\|_{2} \in S^{2}$ and we have

$$
\min \leq\left\|\frac{v}{\|v\|_{2}}\right\|=\frac{\|v\|}{\|v\|_{2}} \leq \max
$$

showing this inequality. But this inequality means that the two norms are equivalent.

