Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 2

1. (a) Choose a sequence $x_{j} \in K_{j}$. This sequence is a Cauchy sequence, since for $\epsilon>0$ there exists a j such that $\operatorname{diam}\left(K_{j}\right)<\epsilon$. Then, since $K_{l} \subset K_{j}$ for all $l \geq j$, we have for all $n, m \geq j: x_{n}, x_{m} \in K_{j}$ and, therefore,

$$
d\left(x_{n}, x_{m}\right) \leq \operatorname{diam}\left(K_{j}\right)<\epsilon .
$$

Since (M, d) is complete, x_{n} is convergent: $x_{n} \rightarrow x \in M$. We show that $x \in \bigcap_{j=1}^{\infty} K_{j}$. This is true if we have $x \in K_{j}$ for all j. Since $x_{n} \rightarrow x$ and $x_{n} \in K_{j}$ for all $n \geq j$, and K_{j} is closed, we conclude from Proposition 1.15: $x \in K_{j}$. Finally, we show that x is the only point in the intersection. Assume $x, y \in \bigcap K_{j}$ with $x \neq y$. Then $d(x, y)=\epsilon>0$. Choose n such that diam $\left(K_{n}\right)<\epsilon$. Since $x, y \in K_{n}$, we must have $d(x, y)<\epsilon$, a contradiction.
(b) Let $U_{j}=(0,1 / j) \subset \mathbb{R}$. Then the U_{j} are nested, $\operatorname{diam}\left(U_{j}\right)=1 / j \rightarrow$ 0 , and $\bigcap_{j=1}^{\infty} U_{j}=\emptyset$.
2. Assume that $f_{n} \rightarrow f \in B([a, b])$. Let $x \in[a, b]$ and $\epsilon>0$. Then there exists n_{0} such that $d\left(f_{n}, f\right)<\epsilon / 3$ for all $n \geq n_{0}$. In particular, $d\left(f_{n_{0}}, f\right)<\epsilon / 3$. Since $f_{n_{0}}$ is continuous, there is a $\delta>0$ such that $\left|f_{n_{0}}(y)-f_{n_{0}}(x)\right|<\epsilon / 3$ for all y with $|y-x|<\delta$. This implies that

$$
\begin{aligned}
|f(x)-f(y)| & \leq\left|f(x)-f_{n_{0}}(x)\right|+\left|f_{n_{0}}(x)-f_{n_{0}}(y)\right|+\left|f_{n_{0}}(y)-f(y)\right| \\
& <d\left(f, f_{n_{0}}\right)+\epsilon / 3+d\left(f, f_{n_{0}}\right)<\epsilon / 3+\epsilon / 3+\epsilon / 3=\epsilon,
\end{aligned}
$$

for all y with $|y-x|<\delta$. This means that f is continuous at x.
3. Let $\left(A_{\alpha}\right)_{\alpha \in I}$ be a family of open sets. Let $x \in \bigcup A_{\alpha}$. Then there exists $\alpha_{0} \in I$ with $x \in A_{\alpha_{0}}$. Since $A_{\alpha_{0}}$ is open, there exists an open ball $U_{R}(x) \subset A_{\alpha_{0}}$ for $R>0$ small enough. This implies $U_{R}(x) \subset \bigcup A_{\alpha}$, i.e., $\bigcup A_{\alpha}$ is open.
4. We obviously have $\left\|h_{j}\right\|=1$, since h_{j} is the normalisation of g_{j}. We will prove by induction that for all $n \in \mathbb{N}_{0}$: h_{n} is orthogonal to any h_{k} with $k<n$. For $n=0$ there is nothing to prove. Assume the statement is true for all integer values below n. Then, for $k<n$, we have

$$
\begin{aligned}
\left\langle g_{n}, h_{k}\right\rangle & =\left\langle f_{n}-\sum_{l=0}^{n-1}\left\langle f_{n}, h_{l}\right\rangle h_{l}, h_{k}\right\rangle \\
& =\left\langle f_{n}, h_{k}\right\rangle-\sum_{l=0}^{n-1}\left\langle f_{n}, h_{l}\right\rangle \cdot\left\langle h_{l}, h_{k}\right\rangle
\end{aligned}
$$

Note in the formula above, we have $\left\langle h_{l}, h_{k}\right\rangle=\delta_{l k}$, by the induction hypothesis. This yields

$$
\left\langle g_{n}, h_{k}\right\rangle=\left\langle f_{n}, h_{k}\right\rangle-\left\langle f_{n}, h_{k}\right\rangle=0,
$$

i.e., g_{n} is orthogonal to h_{k}. Since h_{n} is just the normalisation of g_{n}, the same holds for h_{n}. This finishes the induction step.
The procedure yields:

$$
\begin{aligned}
h_{0}(x) & =1, \\
h_{1}(x) & =x-\langle x, 1\rangle 1=x-\frac{1}{2} \\
h_{2}(x) & =x^{2}-\left\langle x^{2}, x-\frac{1}{2}\right\rangle\left(x-\frac{1}{2}\right)-\left\langle x^{2}, 1\right\rangle 1 \\
& =x^{2}-\frac{5}{6}\left(x-\frac{1}{2}\right)-\frac{1}{3}=x^{2}-\frac{5}{6} x+\frac{1}{12} .
\end{aligned}
$$

5. The elements $\mathbf{s}_{j} \in B_{1}(\mathbf{0})$ obviously satisfy $d\left(\mathbf{s}_{j}, \mathbf{s}_{k}\right)=2$. Assume there would be finitely many balls $U_{1 / 2}\left(\mathbf{x}_{1}\right), \ldots, U_{1 / 2}\left(\mathbf{x}_{k}\right)$ covering $B_{1}(\mathbf{0})$. If $\mathbf{s}_{i} \in U_{1 / 2}\left(\mathbf{x}_{j}\right)$, then $U_{1 / 2}\left(\mathbf{x}_{j}\right) \subset U_{1}\left(\mathbf{s}_{i}\right)$, by triangle inequality. But this means that no other \mathbf{s}_{l} can lie in $U_{1 / 2}\left(\mathbf{x}_{j}\right)$, since all \mathbf{s}_{l} have distance two from each other. This shows that every ball $U_{1 / 2}\left(\mathbf{x}_{j}\right)$ contains at most one of the points $\mathbf{s}_{l} \in B_{1}(\mathbf{0})$. Since there are infinitely many \mathbf{s}_{l}, this leads to a contradiction.
