Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 16

1. (a) We have

$$
d \omega=3 d x \wedge d y \wedge d z
$$

(b) An almost coordinate chart of E is given by

$$
\varphi: V:=(0,2 \pi) \times(-\pi / 2, \pi / 2) \rightarrow U \subset E, \quad \varphi(\alpha, \beta)=(a \cos \alpha \cos \beta, b \sin \alpha \cos \beta, c \sin \beta) .
$$

The points, which are not reached by this parametrisation form a smooth curve connecting south and north pole of the ellipse. This is a set of measure zero. Then we have

$$
\begin{aligned}
& w_{2}:=\frac{\partial \varphi}{\partial \alpha}(\alpha, \beta)=(-a \sin \alpha \cos \beta, b \cos \alpha \cos \beta, 0)^{\top}, \\
& w_{3}:=\frac{\partial \varphi}{\partial \beta}(\alpha, \beta)=(-a \cos \alpha \sin \beta,-b \sin \alpha \sin \beta, c \cos \beta)^{\top}, \\
& w_{1}:=\frac{\partial \varphi}{\partial \alpha}(\alpha, \beta) \times \frac{\partial \varphi}{\partial \beta}(\alpha, \beta)=\left(b c \cos \alpha \cos ^{2} \beta, a c \sin \alpha \cos ^{2} \beta, a b \sin \alpha \cos \beta\right)^{\top} .
\end{aligned}
$$

By construction w_{1}, w_{2}, w_{3} have the same orientation as e_{1}, e_{2}, e_{3} and at $\varphi(\pi, 0)=(-a, 0,0)$ we have $w_{1}=(-b c, 0,0)$, so that the outer unit normal vector is positively oriented with respect to the orientation induced by this coordinate chart.
We have

$$
\int_{E} \omega=\int_{U} \omega=\int_{V} \varphi^{*} \omega,
$$

and

$$
\begin{aligned}
& \quad \varphi^{*} \omega=a \cos \alpha \cos \beta d(b \sin \alpha \cos \beta) \wedge d(c \sin \beta)- \\
& -b \sin \alpha \cos \beta d(a \cos \alpha \cos \beta) \wedge d(c \sin \beta)+c \sin \beta d(a \cos \alpha \cos \beta) \wedge d(b \sin \alpha \cos \beta)= \\
& \quad=a \cos \alpha \cos \beta(b \cos \alpha \cos \beta d \alpha-b \sin \alpha \sin \beta d \beta) \wedge c \cos \beta d \beta- \\
& \quad-b \sin \alpha \cos \beta(-a \sin \alpha \cos \beta d \alpha-a \cos \alpha \sin \beta d \beta) \wedge c \cos \beta d \beta+ \\
& +c \sin \beta(-a \sin \alpha \cos \beta d \alpha-a \cos \alpha \sin \beta d \beta) \wedge(b \cos \alpha \cos \beta d \alpha-b \sin \alpha \sin \beta d \beta)= \\
& =a b c\left(\cos ^{2} \alpha \cos ^{3} \beta+\sin ^{2} \alpha \cos ^{3} \beta+\sin ^{2} \alpha \sin ^{2} \beta \cos \beta+\cos ^{2} \alpha \sin ^{2} \beta \cos \beta\right) d \alpha \wedge d \beta= \\
& \quad=a b c\left(\cos ^{3} \beta+\sin ^{2} \beta \cos \beta\right) d \alpha \wedge d \beta=a b c \cos \beta d \alpha \wedge d \beta .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \int_{E} \omega=\int_{V} \varphi^{*} \omega=\int_{(0,2 \pi)} \int_{(-\pi / 2, \pi / 2)} a b c \cos \beta d \beta d \alpha= \\
&=2 \pi a b c \int_{(-\pi / 2, \pi / 2)} \cos \beta d \beta=4 \pi a b c .
\end{aligned}
$$

2. We use in our arguments the abbreviations $I=\left(i_{1}, \ldots, i_{k}\right)$ and $J=$ $\left(j_{1}, \ldots, j_{k-1}\right.$. Note also that the definition of i_{t} implies $D i_{t}(x)(v)=(0, v)$ and

$$
\begin{equation*}
d t\left(D i_{t}(x)(v)\right)=d t(0, v)=0, \tag{1}
\end{equation*}
$$

since t is the first coordinate in $\left(t, x_{1}, \ldots, x_{n}\right)$.
(a) By linearity, it suffices to prove the formula in (a) only for $\eta=f_{I} d x_{I}$ and for $\eta=g_{J} d t \wedge d x_{J}$.
Case $\eta=f_{I} d x_{I}$: Then $I \eta=0$, by definition of I, and $d(I \eta)=0$. On the other hand, we have

$$
d \eta=\frac{\partial f_{I}}{\partial t} d t \wedge d x_{I}+\sum_{i=1}^{n} \frac{\partial f_{I}}{\partial x_{i}} d x_{i} \wedge d x_{I}
$$

which implies

$$
\begin{aligned}
(I(d \eta))_{x} & =\int_{0}^{1} \frac{\partial f_{I}}{\partial t} \underbrace{d x_{I}\left(D i_{t}(x) \cdot, \ldots, D i_{t}(x) \cdot\right)}_{d x_{I}(\cdot, \ldots, \cdot), \text { where } d x_{I} \in \Omega^{k}(U)} \\
& =\left(f_{I}(1, x)-f_{I}(0, x)\right) \cdot d x_{I}(\cdot, \ldots, \cdot) .
\end{aligned}
$$

Then

$$
d(I \eta)_{x}+I(d \eta)_{x}=\left(f_{I}(1, x)-f_{I}(0, x)\right) \cdot d x_{I}
$$

and

$$
i_{1}^{*} \eta-i_{0}^{*} \eta=f_{I}(1, \cdot) d x_{I}-f_{I}(0, \cdot) d x_{I}
$$

Case $\eta=g_{j} d t \wedge d x_{j}$: Then $d \eta=-\sum_{j=1}^{n} \frac{\partial g_{J}}{\partial x_{j}} d t \wedge d x_{j} \wedge d x_{J}$ and

$$
(I \eta)_{x}=\int_{0}^{1} g_{J}(t, x) \underbrace{d x_{J}\left(D i_{t}(x) \cdot, \text { dots, } D i_{t}(x) \cdot\right)}_{d x_{J}(\cdot, \ldots, \cdot), \text { where } d x_{I} \in \Omega^{k}(U)} d t
$$

and

$$
d(I \eta)_{x}=\sum_{j=1}^{n}\left(\int_{0}^{1} \frac{\partial g_{J}}{\partial x_{j}}(t, x) d t\right) \underbrace{d x_{i} \wedge d x_{J}}_{\in \Omega^{k}(U)},
$$

and

$$
\begin{aligned}
I(d \eta)_{x} & =-\int_{0}^{1} \sum_{j=1}^{n} \frac{\partial g_{j}}{\partial x_{j}}(t, x) \underbrace{d x_{j} \wedge d x_{J}\left(D i_{t}(x) \cdot, \ldots, D i_{t}(x) \cdot\right) d t}_{d x_{j} \wedge d x_{J}(\cdot, \ldots, \cdot), \text { where } d x_{j} \wedge d x_{j} \in \Omega^{k}(U)} \\
& =-\sum_{j=1}^{n}\left(\int_{0}^{1} \frac{\partial g_{J}}{\partial x_{j}}(t, x) d t\right) d x_{j} \wedge d x_{J}(\cdot, \ldots, \cdot) .
\end{aligned}
$$

This implies that

$$
d(I \eta)_{x}+I(d \eta)_{x}=0
$$

On the other hand, we have $i_{1}^{*} \eta-i_{0}^{*} \eta=0$ since

$$
\left(i_{t}^{*} \eta\right)_{x}\left(v_{1}, \ldots, v_{k}\right)=g_{J}(t, x) \underbrace{d t \wedge d x_{J}\left(D i_{t}(x) v_{1}, \ldots, D i_{t}(x) v_{k}\right)}_{=0, \text { because of }(1)} .
$$

This shows also in this case that

$$
d(I \eta)_{x}+I(d \eta)_{x}=i_{1}^{*} \eta-i_{0}^{*} \eta .
$$

(b) We have $H \circ i_{1}(x)=H(1, x)=x$ and $H \circ i_{0}(x)=H(0, x)=p$. Note also that if F is constant, then $D F=0$ and, therefore,

$$
\left(F^{*} \omega\right)_{x}\left(v_{1}, \ldots, v_{k}\right)=\omega_{F(x)}(\underbrace{D F(x) v_{1}}_{=0}, \ldots, \underbrace{D F(x) v_{k}}_{=0})=0,
$$

i.e., $F^{*} \omega=0$. Let $\alpha=I\left(H^{*} \omega\right) \in \Omega^{k-1}(U)$. We have, by (a)

$$
i_{1}^{*} H^{*} \omega-i_{0}^{*} H^{*} \omega=d(\underbrace{I\left(H^{*} \omega\right)}_{=\alpha})+I\left(d\left(H^{*} \omega\right)\right),
$$

and therefore

$$
\omega-0=d \alpha+I\left(d\left(H^{*} \omega\right)\right)=d \alpha+I(H^{*}(\underbrace{d \omega}_{=0, \omega \text { closed }}))=d \alpha,
$$

i.e., ω is exact.

