Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 13
1.2.2012

1. Let $x \in \mathbb{R}^{n}$. Then

$$
L_{(x, 0), N}=\{(\lambda x, 1-\lambda) \mid \lambda \in \mathbb{R}\}
$$

and $\|(\lambda x, 1-\lambda)\|_{2}^{2}=1$ is equivalent to $\lambda=0$ or $\lambda=\frac{2}{1+\|x\|_{2}^{2}}$. The second equation leads to $\lambda=\frac{2}{1+\|x\|_{2}^{2}}$, which means that

$$
\varphi_{1}(x)=\left(\frac{2 x}{1+\|x\|_{2}^{2}}, \frac{\|x\|_{2}^{2}-1}{1+\|x\|_{2}^{2}}\right) .
$$

Similarly, we obtain

$$
\varphi_{2}(x)=\left(\frac{2 x}{1+\|x\|_{2}^{2}}, \frac{1-\|x\|_{2}^{2}}{\|x\|_{2}^{2}+1}\right) .
$$

Let $X=\frac{2 x}{1+\|x\|_{2}^{2}}$ and $Z=\frac{1-\|x\|_{2}^{2}}{1+\|x\|_{2}^{2}}$. This implies that $X=(1+Z) x$ and $\varphi_{2}^{-1}(X, Z)=\frac{X}{1+Z}$. Consequently,
$\varphi_{2}^{-1} \circ \varphi_{1}(x)=\varphi_{2}^{-1}\left(\frac{2 x}{1+\|x\|_{2}^{2}}, \frac{\|x\|_{2}^{2}-1}{1+\|x\|_{2}^{2}}\right)=\frac{2 x}{1+\|x\|_{2}^{2}} \cdot \frac{1+\|x\|_{2}^{2}}{2\|x\|_{2}^{2}}=\frac{x}{\|x\|_{2}^{2}}$.
Moreover, we have

$$
\frac{\partial}{\partial x_{j}} \frac{x_{i}}{\|x\|_{2}^{2}}=\frac{\delta_{i j}}{\|x\|_{2}^{2}}-\frac{2 x_{i} x_{j}}{\|x\|^{4}}
$$

This implies that

$$
D\left(\varphi_{2}^{-1} \circ \varphi_{1}\right)(x)=\frac{1}{\|x\|_{2}^{2}}\left(\operatorname{Id}_{n}-2 \frac{1}{\|x\|_{2}^{2}} x^{\top} x\right)
$$

Remark: Geometrically, the matrix $\frac{1}{\|x\|^{2}} x^{\top} x$ describes a projection on the line $\mathbb{R} v$ and $\operatorname{Id}_{n}-2 \frac{1}{\|x\|_{2}^{2}} x \top x$ is a reflection in the hyperplane orthogonal to v. This geometric interpretation implies that $\frac{1}{\|x\|_{2}^{2}}\left(\operatorname{Id}_{n}-2 \frac{1}{\|x\|_{2}^{2}} x^{\top} x\right)$ is an invertible matrix with inverse $\|x\|_{2}^{2}\left(\operatorname{Id}_{n}-2 \frac{1}{\|x\|_{2}^{2}} x^{\top} x\right)$.
2. (a) We have

$$
D F(x, y, z)=\left(2 x\left(1-\frac{5}{\sqrt{x^{2}+y^{2}}}\right), 2 y\left(1-\frac{5}{\sqrt{x^{2}+y^{2}}}\right), 2 z\right) .
$$

Note that $F^{-1}(4)$ does not contain any point of the form $(0,0, z)$, since we have $F(0,0, z)=z^{2}+5^{2} \geq 25$. So the preimage avoids any points which might be problematic in the formula for $D F(x, y, z)$. On the other hand, the critical points $(x, y, z) \neq 0$ are given when $z=0$ and $x^{2}+y^{2}=25$. But for those points we have $F(x, y, z)=$ $0 \neq 4$. This shows that 4 is a regular value of $F .4$ lies in $\operatorname{im}(F)$ since we have $F(5,0,2)=4$.
(b) We have

$$
\begin{aligned}
& F(\varphi(\alpha, \beta))= \\
& (2 \sin \beta)^{2}+\left(\sqrt{((5+2 \cos \beta) \cos \alpha)^{2}+((5+2 \cos \beta) \sin \alpha)^{2}}-5\right)^{2}= \\
& \quad(2 \sin \beta)^{2}+(2 \cos \beta)^{2}=4,
\end{aligned}
$$

i.e., $\varphi(\alpha, \beta) \in M$. On the other hand, for every $(x, y, z) \in M$, we must have $3 \leq \sqrt{x^{2}+y^{2}} \leq 7$, so there exists $\alpha \in[0,2 \pi)$ and $3 \leq \rho \leq 7$ with

$$
(x, y)=\rho(\cos \alpha, \sin \alpha) .
$$

On the other hand, we must have $z^{2}+(\rho-5)^{2}=4$, i.e., there is a $\beta \in[0,2 \pi)$ such that $(\rho-5, z)=2(\cos \beta, \sin \beta)$. Both results together imply that $z=2 \sin \beta$ and $\rho=5+2 \cos \beta$ and $(x, y)=$ $(5+2 \cos \beta)(\cos \alpha, \sin \alpha)$, i.e.,
$M=\{((5+2 \cos \beta) \cos \alpha,(5+2 \cos \beta) \sin \alpha, 2 \sin \beta) \mid \alpha, \beta \in[0,2 \pi)\}$.
This implies that the points of M, not covered by $\varphi(U)$, are the (closed) curves

$$
c_{1}(t)=(5+2 \cos \beta, 0,2 \sin \beta), \quad t \in[0,2 \pi]
$$

and

$$
c_{2}(t)=(7 \cos \alpha, 7 \sin \alpha, 0), \quad t \in[0,2 \pi] .
$$

Therefore, φ is an almost global coordinate patch of M.
(c) We have

$$
\begin{aligned}
\varphi^{*} d x & =-(5+2 \cos \beta) \sin \alpha d \alpha-2 \sin \beta \cos \alpha d \beta, \\
\varphi^{*} d y & =(5+2 \cos \beta) \cos \alpha d \alpha-2 \sin \beta \sin \alpha d \beta, \\
\varphi^{*} d z & =2 \cos \beta d \beta, \\
\varphi^{*}(d y \wedge d z) & =2(5+2 \cos \beta) \cos \alpha \cos \beta d \alpha \wedge d \beta, \\
\varphi^{*}(d x \wedge d z) & =-2(5+2 \cos \beta) \sin \alpha \cos \beta d \alpha \wedge d \beta, \\
\varphi^{*}(d x \wedge d y) & =2(5+2 \cos \beta) \sin \beta d \alpha \wedge d \beta \\
\varphi^{*} \omega & =2(5+2 \cos \beta)(5 \cos \beta+2) d \alpha \wedge d \beta .
\end{aligned}
$$

3. We can cover M with one global coordinate patch, namely $\varphi: U \rightarrow \mathbb{R}^{k+1}$, $\varphi(x)=(x, f(x)) . \varphi$ is obviously continuous and we have $M=\operatorname{im}(\varphi)$. Moreover, we have $\varphi^{-1}(x, y)=x$, which is again obviously continuous. Finally, the Jacobi matrix of φ is given by

$$
D \varphi(x)=\binom{\operatorname{Id}_{k}}{\frac{\partial f}{\partial x_{1}}(x) \cdots \frac{\partial f}{\partial x_{k}}(x)},
$$

which has obviously rank k. This shows that φ has all properties of a global coordinate patch and M is a smooth manifold.
4. (a) Let f be a homogeneous polynomial of degree $m \geq 1$ and $y \neq 0$. Let $x \in f^{-1}(y)$. Then we obtain from Euler's relation:

$$
\langle\operatorname{grad} f(x), x\rangle=m f(x)=m y \neq 0 .
$$

This implies that $\operatorname{grad} f(x) \neq 0$, so $D f(x): \mathbb{R}^{k} \rightarrow \mathbb{R}$ is surjective for all $x \in f^{-1}(y)$. Therefore, $y \neq 0$ is a regular value.
(b) The group $S L(n, \mathbb{R}) \subset M(n, \mathbb{R})=\mathbb{R}^{n^{2}}$ ist equal to $f^{-1}(1)$, where $f(A)=\operatorname{det} A$. Now, f is a homogeneous polynomial of degree n in $\mathbb{R}^{n^{2}}$, so 1 is a regular value of f, by (a). Theorem 9.5 implies that $S L(n, \mathbb{R})=f^{-1}(1)$ is a differentiable manifold of dimension $n^{2}-1$.

Finally, we provide the solutions for the homeworks:
2. (From Exercise Sheet 11) We have

$$
\begin{aligned}
f^{*}\left(y_{3} d y_{1} \wedge d y_{2} \wedge d y_{3}\right) & =x_{3} d\left(x_{1} \cos x_{2}\right) \wedge d\left(x_{1} \sin x_{2}\right) \wedge d x_{3} \\
& =x_{3}\left(\cos x_{2} d x_{1}-x_{1} \sin x_{2} d x_{2}\right) \wedge\left(\sin x_{2} d x_{1}+x_{1} \cos x_{2} d x_{2}\right) \wedge d x_{3} \\
& =x_{3}\left(x_{1} \cos ^{2} x_{2}+x_{1} \sin ^{2} x_{2}\right) d x_{1} \wedge d x_{2} \wedge d x_{3} \\
& =x_{1} x_{3} d x_{1} \wedge d x_{2} \wedge d x_{3}
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\int_{(1,2) \times(0,2 \pi) \times(0,1)} \omega & =\int_{1}^{2} \int_{0}^{2 \pi} \int_{0}^{1} x_{1} x_{3} d x_{3} d x_{2} d x_{1} \\
& =2 \pi \int_{1}^{2}\left[\frac{1}{2} x_{1} x_{3}^{2}\right]_{x_{3}=0}^{x_{3}=1} d x_{1} \\
& =\pi \int_{1}^{2} x_{1} d x_{1}=\frac{3}{2} \pi .
\end{aligned}
$$

4. (From Exercise Sheet 11) For each i, choose a countable set of rectangles $Q_{1}^{i}, Q_{2}^{i}, \ldots$ such that

$$
A_{i} \subset \bigcup_{j} Q_{j}^{i}
$$

and

$$
\sum_{j} v\left(Q_{j}^{i}\right)<\frac{\epsilon}{2^{i}} .
$$

Then we have

$$
\bigcup_{i} A_{i} \subset \bigcup_{i, j} Q_{j}^{i}
$$

and

$$
\sum_{i, j} v\left(Q_{j}^{i}\right)<\sum_{i=1}^{\infty} \frac{\epsilon}{2^{i}}=\epsilon .
$$

Moreover, the set of rectangles Q_{j}^{i} is countable, since we can enumerate them by $Q_{1}^{1}, Q_{2}^{1}, Q_{1}^{2}, Q_{3}^{1}, Q_{2}^{2}, Q_{1}^{3} \ldots$ I.e., we choose first all rectangles Q_{j}^{i} where $i+j$ adds up to 1 , then the ones where $i+j$ adds up to 2 , then the ones where $i+j$ adds up to $3, \ldots$ In this way, we capture each one of the Q_{j}^{i} 's in our enumeration. This shows that $\bigcup_{i} A_{i}$ is also a set of measure zero.

