Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 10

1. Let $f=\left(f_{1}, f_{2}, f_{3}\right)$. We have

$$
\begin{aligned}
& f^{*}\left(y_{3} d y_{1} \wedge d y_{2} \wedge d y_{3}\right)=x_{3}^{2}\left(d f_{1}\right)_{x} \wedge\left(d f_{2}\right)_{x} \wedge\left(d f_{3}\right)_{x}= \\
& x_{3}^{2}\left(\cos x_{2} d x_{1}-x_{1} \sin x_{2} d x_{2}\right) \wedge\left(\sin x_{2} d x_{1}+x_{1} \cos x_{2} d x_{2}\right) \wedge 2 x_{3} d x_{3}= \\
& 2 x_{3}^{3}\left(x_{1} \cos ^{2} x_{2}+x_{1} \sin ^{2} x_{2}\right) d x_{1} \wedge d x_{2} \wedge d x_{3}=2 x_{1} x_{3}^{3} d x_{1} \wedge d x_{2} \wedge d x_{3}
\end{aligned}
$$

2. We have

$$
\begin{gathered}
\varphi^{*}\left(d y_{1} \wedge d y_{2} \wedge \cdots \wedge d y_{n}\right)=d \varphi_{1} \wedge d \varphi_{2} \wedge \cdots \wedge d \varphi_{n}= \\
\left(\sum_{i_{1}=1}^{n} \frac{\partial \varphi_{1}}{\partial x_{i_{1}}} d x_{i_{1}}\right) \wedge \cdots \wedge\left(\sum_{i_{n}=1}^{n} \frac{\partial \varphi_{n}}{\partial x_{i_{n}}} d x_{i_{n}}\right)= \\
\sum_{\sigma \in \mathcal{S}_{n}} \frac{\partial \varphi_{1}}{\partial x_{\sigma(1)}} \frac{\partial \varphi_{2}}{\partial x_{\sigma(2)}} \cdots \frac{\partial \varphi_{n}}{\partial x_{\sigma(n)}} d x_{\sigma(1)} \wedge d x_{\sigma(2)} \wedge \cdots \wedge d x_{\sigma(n)}= \\
\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{sign}(\sigma) \frac{\partial \varphi_{1}}{\partial x_{\sigma(1)}} \frac{\partial \varphi_{2}}{\partial x_{\sigma(2)}} \cdots \frac{\partial \varphi_{n}}{\partial x_{\sigma(n)}} d x_{1} \wedge \cdots \wedge d x_{n}=\operatorname{det}\left(\begin{array}{ccc}
\frac{\partial \varphi_{1}}{\partial x_{1}} & \cdots & \frac{\partial \varphi_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial \varphi_{n}}{\partial x_{1}} & \cdots & \frac{\partial \varphi_{n}}{\partial x_{n}}
\end{array}\right) d x_{1} \wedge \cdots \wedge d x_{n} .
\end{gathered}
$$

Evaluation at the point $x \in U$ yields

$$
\left(\varphi^{*}\left(d y_{1} \wedge d y_{2} \wedge \cdots \wedge d y_{n}\right)\right)_{x}=\operatorname{det} D \varphi(x)\left(d x_{1} \wedge \cdots \wedge d x_{n}\right)_{x}
$$

3. The restriction $\left.\omega\right|_{U_{j}}$ of ω to any of the domains U_{j} is exact, so we have $\left.\omega\right|_{U_{j}}=d f_{j}$ with $f_{j} \in C^{\infty}\left(U_{j}\right)$. On $U_{12}:=U_{1} \cap U_{2}$, we have $\left.d f_{1}\right|_{U_{12}}=$ $\left.d f_{2}\right|_{U_{12}}$, so $\left.\left(d f_{1}-d f_{2}\right)\right|_{U_{12}}=0$. Since U_{12} is pathwise connected, and the differential of $\left.\left(f_{1}-f_{2}\right)\right|_{U_{12}}$ vanishes, the function $\left.\left(f_{1}-f_{2}\right)\right|_{U_{12}}$ must be constant. Let $\left.\left(f_{1}-f_{2}\right)\right|_{U_{12}}=c_{12} \in \mathbb{R}$. Similar arguments show that $\left.\left(f_{2}-f_{3}\right)\right|_{U_{23}}=c_{23} \in \mathbb{R}$. Define $f \in C^{\infty}\left(U_{1} \cup U_{2} \cup U_{3}\right)$ as follows:

$$
f(x)= \begin{cases}f_{1}(x)-c_{12} & \text { if } x \in U_{1} \\ f_{2}(x) & \text { if } x \in U_{2} \\ f_{3}(x)+c_{23} & \text { if } x \in U_{3}\end{cases}
$$

The function is obviously well defined on $U_{1} \cup U_{2} \cup u_{3}$. Moreover, we have

$$
d f_{x}= \begin{cases}\left(d f_{1}\right)_{x} & \text { if } x \in U_{1} \\ \left(d f_{2}\right)_{x} & \text { if } x \in U_{2}=\omega_{x} \\ \left(d f_{3}\right)_{x} & \text { if } x \in U_{3}\end{cases}
$$

i.e., $\omega \in \Omega^{1}\left(U_{1} \cup U_{2} \cup U_{3}\right)$ is exact.
4. (a) Assume that $I^{k}(\omega)=0$. Then $\omega_{U_{1}}=0$ and $\omega_{U_{2}}=0$. Since any point $x \in U$ lies in either U_{1} or U_{2}, this implies $\omega_{x}=0$, i.e., $\omega=0$ and I^{k} is injective.
(b) Let $\omega \in \Omega^{k}(U)$. Then

$$
\begin{aligned}
J^{k}\left(I^{k}(\omega)\right)=J^{k}\left(\left.\omega\right|_{U_{1}},\left.\omega\right|_{U_{2}}\right)=\left.\left(\left.\omega\right|_{U_{1}}\right)\right|_{U_{1} \cap U_{2}}-\left.\left(\left.\omega\right|_{U_{2}}\right)\right|_{U_{1} \cap U_{2}} & = \\
\left.\omega\right|_{U_{1} \cap U_{2}}-\left.\omega\right|_{U_{1} \cap U_{2}} & =0 .
\end{aligned}
$$

This shows that $\operatorname{im} I^{K} \subset \operatorname{ker} J^{k}$. Now, we assume that $\left(\omega_{1}, \omega_{2}\right) \in$ $\operatorname{ker} J^{k}$. Let $\omega_{1}=\sum_{I} f_{I} d x_{I}, \omega_{2}=\sum_{I} g_{I} d x_{I}$, where $I=\left(i_{1}, \ldots, i_{k}\right)$ runs through all multi-indices with $i_{1}<i_{2}<\cdots<i_{k}$. We conclude from $J^{k}\left(\omega_{1}, \omega_{2}\right)=0$ that $\left.\omega_{1}\right|_{U_{1} \cap U_{2}}=\left.\omega_{2}\right|_{U_{1} \cap U_{2}}$, which implies that $\left.f_{I}\right|_{U_{1} \cap U_{2}}=\left.g_{I}\right|_{U_{1} \cap U_{2}}$. Now, define functions $h_{I} \in C^{\infty}(U)$ by

$$
h_{I}(x)= \begin{cases}f_{I}(x), & \text { if } x \in U_{1} \\ g_{I}(x), & \text { if } x \in U_{2}\end{cases}
$$

h_{I} is well-defined since the restrictions of f_{I} and g_{I} on the intersection $U_{1} \cap U_{2}$ agree. Then $\omega=\sum_{I} h_{I} d x_{I} \in \Omega^{k}(U)$ is well-defined, and we obviously have

$$
I^{k}(\omega)=\left(\left.\omega\right|_{U_{1}},\left.\omega\right|_{U_{2}}\right)=\left(\sum_{I} f_{I} d x_{I}, \sum_{I} g_{I} d x_{I}\right)=\left(\omega_{1}, \omega_{2}\right) .
$$

This shows the converse inclusion $\operatorname{ker} J^{k} \subset \operatorname{im} I^{k}$.
(c) For a given function $f \in C^{\infty}\left(U_{1} \cap U_{2}\right)$, let us introduce smooth extensions of f to $C^{\infty}\left(U_{1}\right)$ and $C^{\infty}\left(U_{2}\right)$ via
$f^{1}(x)=\left\{\begin{array}{ll}p_{2}(x) f(x) & \text { if } x \in U_{1} \cap U_{2} \\ 0 & \text { if } x \in U_{1}-U_{2}\end{array} \quad f^{2}(x)= \begin{cases}p_{1}(x) f(x) & \text { if } x \in U_{1} \cap U_{2} \\ 0 & \text { if } x \in U_{2}-U_{1}\end{cases}\right.$
Then we obviously have $\left.\left(f^{1}+f^{2}\right)\right|_{U_{1} \cap U_{2}}=\left.p_{1}\right|_{U_{1} \cap U_{2}} f+\left.p_{2}\right|_{U_{1} \cap U_{2}} f=$ $\left.\left(p_{1}+p_{2}\right)\right|_{U_{1} \cap U_{2}} f=f$. For a differential form $\omega \in \Omega^{k}\left(U_{1} \cap U_{2}\right)$, given by

$$
\omega=\sum_{I} f_{I} d x_{I},
$$

we define $\omega_{1}=\sum_{I} f_{I}^{1} d x_{I} \in \Omega^{k}\left(U_{1}\right)$ and $\omega_{2}=-\sum_{I} f_{I}^{2} d x_{I} \in$ $\Omega^{k}\left(U_{2}\right)$. Then

$$
J^{k}\left(\omega_{1}, \omega_{2}\right)=\left.\sum_{I}\left(f_{I}^{1}-\left(-f_{I}^{2}\right)\right)\right|_{U_{1} \cap U_{2}} d x_{I}=\sum_{I} f_{I} d x_{I}=\omega,
$$

which shows that J^{k} is surjective.
5. Assume that F doesn't have zeroes in D. Since $c:[0,2 \pi] \rightarrow U$ is a closed curve, so is $\gamma=F \circ c:[0,2 \pi] \rightarrow \mathbb{R}^{2}-0$. Let $\gamma_{0}:[0,2 \pi] \rightarrow \mathbb{R}^{2}-0$ be the point curve $\gamma_{0}(t)=F(p)$. Observe that

$$
(1-s) c(t)+s p=p+(1-s) r(\cos t, \sin t) \in D
$$

for all $s \in[0,1]$. This shows that the map $H(t, s)=F((1-s) c(t)+s p)$ is well defined. Moreover, it is a free homotopy between γ and γ_{0}, since $H(t, 0)=F(c(t))=\gamma(t), H(t, 1)=F(p)=\gamma_{0}(t)$ and

$$
H(0, s)=F((1-s) c(0)+s p)=F((1-s) c(2 \pi)+s p)=H(2 \pi, s) .
$$

Next, we calculate

$$
\begin{aligned}
\int_{c} F^{*} \omega_{0}= & \int_{0}^{2 \pi}\left(F^{*} \omega_{0}\right)_{c(t)}\left(c^{\prime}(t)\right) d t=\int_{0}^{2 \pi}\left(\omega_{0}\right)_{F(c(t))}\left(D F(c(t)) c^{\prime}(t)\right) d t= \\
& \int_{0}^{2 \pi}\left(\omega_{0}\right)_{F \circ c(t)}(F \circ c)^{\prime}(t) d t=\int_{0}^{2 \pi}\left(\omega_{0}\right)_{\gamma(t)}\left(\gamma^{\prime}(t)\right) d t=\int_{\gamma} \omega_{0} .
\end{aligned}
$$

We know from Exercise 2(b) on Sheet 7 that ω_{0} is closed. Since γ and γ_{0} are freely homotopic, we conclude that

$$
\int_{\gamma} \omega_{0}=\int_{\gamma_{0}} \omega_{0}=\int_{0}^{2 \pi}\left(\omega_{0}\right)_{F(p)} \underbrace{\left(\gamma_{0}^{\prime}(t)\right)}_{=0} d t=0 .
$$

This obviously contradicts to $n(F, D) \neq 0$.

