Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 1

1. (a) Observe first that, for every non-zero rational number x, we have $\nu_{p}(x)>0$. This immediately implies property (i) of a metric space. Property (ii) is obvious. The inequality

$$
\nu_{p}(x+y) \leq \max \left\{\nu_{p}(x), \nu_{p}(y)\right\} \leq \nu_{p}(x)+\nu_{p}(y),
$$

holds trivially if $x=0$ or $y=0$. Assume that $x, y \neq 0$ and $x=$ $p^{r} \frac{a_{0}}{b_{0}}, y=p^{s} \frac{a_{1}}{b_{1}}$ with $r \geq s$ (otherwise, interchange x and y) and $a_{0}, b_{0}, a_{1}, b_{1}$ are not divisible by p. Then $x+y=p^{s \frac{p^{r-s}}{a_{0} b_{1}+a_{1} b_{0}}} b_{0} b_{1}$, and $b_{0} b_{1}$ is not divisible by p. So we must have $x+y=p^{s^{\prime}} \frac{c_{0}}{d_{0}}$ with $s^{\prime} \geq s$ and c_{0}, d_{0} not divisible by p, which implies
$\nu_{p}(x+y)=p^{-s^{\prime}} \leq p^{-s} \leq \max \left\{p^{-r}, p^{-s}\right\} \leq p^{-r}+p^{-s}=\nu_{p}(x)+\nu_{p}(y)$.
Finally,

$$
\begin{aligned}
d_{p}(x, y)+d_{p}(y, z)=\nu_{p}(x-y)+\nu_{p}(y-z) & \geq \max \left\{d_{p}(x, y), d_{p}(y, z)\right\} \\
\geq \nu_{p}((x-y)+(y-z)) & =\nu_{p}(x-z)=d_{p}(x, z) .
\end{aligned}
$$

(b) We have $d_{p}\left(x_{n}, 0\right)=\nu\left(p^{n}\right)=p^{-n} \rightarrow 0$.
(c) Assume that $n \geq m$. Then

$$
d_{p}\left(x_{n}, x_{m}\right)=\nu_{p}\left(\sum_{j=m}^{n-1}\left(a^{p^{j+1}}-a^{p^{j}}\right)\right) \leq \max \left\{\nu_{p}\left(a^{p^{j+1}}-a^{p^{j}}\right) \mid m \leq j \leq n-1\right\} .
$$

Since $a^{p^{j+1}}-a^{p^{j}}=a^{p^{j}}\left(a^{(p-1) p^{j}}-1\right)$ and $\varphi\left(p^{j+1}\right)=(p-1) p^{j}$, we conclude from Euler's Theorem that $p^{j+1} \mid\left(a^{p^{j+1}}-a^{p^{j}}\right)$. This implies that

$$
d_{p}\left(x_{n}, x_{m}\right) \leq p^{-(m+1)} \rightarrow 0
$$

as $m \rightarrow \infty$. This shows that x_{n} is a Cauchy sequence.
(d) We know from Euler's Theorem that

$$
a^{p^{n}} \equiv a^{p^{n-1}} \equiv a^{p^{n-2}} \equiv \cdots \equiv a \quad \bmod p .
$$

$x_{n} \rightarrow \pm 1$ would mean that $x_{n} \pm 1 \rightarrow 0$ and, in particular $p \mid\left(a^{p^{n}} \pm 1\right)$ for n large enough. Together with $p \mid\left(a^{p^{n}}-a\right)$, this would imply that $p \mid(a \pm 1)$, contradicting to $2 \leq a \leq p-2$.
Using Euler's Theorem $a^{(p-1) p^{n}} \equiv 1 \bmod p^{n+1}$ yields

$$
p^{n+1} \mid\left(x_{n}^{p-1}-1\right),
$$

i.e., $d_{p}\left(x_{n}^{p-1}, 1\right) \leq p^{-(n+1)} \rightarrow 0$.
2. Homework! Will be given in a later solution sheet.
3. (a) Fix an $\epsilon>0$. Then there exists $n_{0} \in \mathbb{N}$ such that, for $n, m \geq n_{0}$:

$$
d\left(x_{n}, x_{m}\right)<\epsilon .
$$

In particular, we have for all $n \geq n_{0}$:

$$
d\left(x_{n_{0}}, x_{n}\right)<\epsilon
$$

Choose $x=x_{n_{0}}$ and $R=\max \left\{\epsilon, d\left(x, x_{1}\right), \ldots, d\left(x, x_{n_{0}-1}\right)\right\}$. Then we have, obviously,

$$
d\left(x, x_{n}\right) \leq R \quad \text { for all } n \in \mathbb{N}
$$

(b) Since $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy sequences, they are bounded by (a), i.e., $\left|x_{n}\right|,\left|y_{n}\right|<C$ for $n \in \mathbb{N}$. Moreover, for given $\epsilon>0$, there exist $n_{0} \in \mathbb{N}$ such that

$$
\left|x_{n}-x_{m}\right|,\left|y_{n}-y_{m}\right|<\frac{\epsilon}{2 C} \quad \text { for all } n, m \geq n_{0}
$$

This implies for $n, m \geq n_{0}$ that

$$
\begin{aligned}
& \left|x_{n} y_{n}-x_{m} y_{m}\right|=\left|x_{n}\left(y_{n}-y_{m}\right)+y_{m}\left(x_{n}-x_{m}\right)\right| \\
& \quad \leq\left|x_{n}\right| \cdot\left|y_{n}-y_{m}\right|+\left|y_{m}\right| \cdot\left|x_{n}-x_{m}\right|<C \frac{\epsilon}{2 C}+C \frac{\epsilon}{2 C}=\epsilon,
\end{aligned}
$$

i.e., $\left(x_{n} y_{n}\right)$ is a Cauchy sequence.

