Analysis III/IV (Math 3011, Math 4201)

Exercise Sheet 8

Do Exercises 2 and 3 as homework for this week. These homework exercises will not be marked, but you can check your solutions against the solution sheet in the following week. It is really important that you do every week the emphasized questions in order to stay up to date with the course.

1. Prove "Cramer's Rule": Let $A=\left(a_{1}, \ldots, a_{n}\right) \in G L(n, \mathbb{R})$ with linear independent columns $a_{j} \in \mathbb{R}^{n}$. Then the unique solution of $A x=b$ with $x=\left(x^{1}, \ldots, x^{n}\right)^{\top}$ is given by

$$
x^{i}=\frac{\operatorname{det}\left(a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{n}\right)}{\operatorname{det}(A)} .
$$

Hint: Note that $A x=b$ can be rewritten as $b=\sum_{j} x^{j} a_{j}$, and use the fact that the determinant is multilinear and alternating.
2. Let $\omega \in \Omega^{2}\left(\mathbb{R}^{3}-0\right)$ be defined as

$$
\omega=\frac{x_{1} d x_{2} \wedge d x_{3}+x_{2} d x_{3} \wedge d x_{1}+x_{3} d x_{1} \wedge d x_{2}}{\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{3 / 2}} .
$$

Show that

$$
\omega_{x}(v, w)=\frac{\langle v \times w, x\rangle}{\|x\|^{3}}
$$

and calculate $d \omega$.
3. Let φ, ψ, ϕ be the following forms in \mathbb{R}^{3} :

$$
\begin{aligned}
\varphi & =x d x-y d y \\
\psi & =z d x \wedge d y+x d y \wedge d z \\
\phi & =z d z
\end{aligned}
$$

Calculate $\varphi \wedge \psi, \phi \wedge \varphi \wedge \psi, d \varphi, d \psi$ and $d \phi$.

