Analysis III/IV (Math 3011, Math 4201)

Exercise Sheet 7

Do Exercise 3 as homework for this week. The cumulative homework over the coming weeks will be collected and marked in a few weeks time. Try to do at least one of the other exercises as well for your own benefit. All of them are very useful. Have a look at all solutions when you receive the solution sheet the following week.
In the Exercises below there appears one important concept, which will be introduced properly a bit later in the lectures for general differential forms (not only 1-forms): "A differential form ω is closed if $d \omega=0$." For our purposes it suffices to use th following description of closedness: Let $U \subset \mathbb{R}^{n}$ be open. A 1-form $\omega=\sum_{j=1}^{n} f_{j} d x_{j} \in \Omega^{1}(U)$ is closed if and only if we have

$$
\frac{\partial f_{j}}{\partial x_{k}}=\frac{\partial f_{k}}{\partial x_{j}} \quad \text { for all } j, k \in\{1, \ldots, n\} .
$$

Use this characterisation whenever a 1 -form is said to be "closed" in the exercises below.

1. Let $\omega=2 x y^{3} d x+3 x^{2} y^{2} d y \in \Omega^{1}\left(\mathbb{R}^{2}\right)$. Show that ω is exact, i.e., there exists $f \in C^{\infty}\left(\mathbb{R}^{2}\right)$ with $\omega=d f$. Calculate

$$
\int_{c} \omega,
$$

where c is the arc of the parabola $y=x^{2}$ from $(0,0)$ to (x, y).
2. This exercise tells us that every exact differential form is closed, but not every closed differential form is exact.
(a) Let $U \subset \mathbb{R}^{n}$ be open. Show that every exact differential form $\omega \in$ $\Omega^{1}(U)$ is closed.
(b) Let $\omega_{0} \in \Omega^{1}\left(\mathbb{R}^{2}-0\right)$ be defined as

$$
\omega_{0}=-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y .
$$

We showed in the lectures that ω_{0} cannot be exact, since $\int_{c} \omega_{0} \neq 0$ for certain closed curves (cf. Proposition 5.13 and Example thereafter). Check that ω_{0} is closed.
3. A function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is said to be homogeneous of degree k if $f(s x, s y, s z)=$ $s^{k} f(x, y, z)$ for all $s>0$ and $(x, y, z) \in \mathbb{R}^{3}$. Prove the following facts:
(a) If f is differentiable and homogeneous of degree k, then we have Euler's relation:

$$
x \frac{\partial f}{\partial x}(x, y, z)+y \frac{\partial f}{\partial y}(x, y, z)+z \frac{\partial f}{\partial z}(x, y, z)=k f(x, y, z)
$$

Hint: Differentiate $f(s x, s y, s z)$ in s and use the chain rule.
(b) If the differential form

$$
\mu=u d x+v d y+w d z \in \Omega^{1}\left(\mathbb{R}^{3}\right)
$$

is such that the coefficient functions u, v, w are homogeneous of degree k and μ is closed, then we have $\mu=d f$ with

$$
f=\frac{x u+y v+z w}{k+1} \in C^{\infty}\left(\mathbb{R}^{2}\right)
$$

4. Let $U=\mathbb{R}^{n}-0$ and $\omega \in \Omega^{1}(U)$ be defined by

$$
\omega=\frac{1}{\|x\|_{2}^{2}} \sum_{i=1}^{n} x_{i} d x_{i}
$$

where $\|\cdot\|_{2}$ denotes the Euclidean norm. Show that ω is exact. Now fix $n=3$. Let k be an integer and $c:[0,2 k \pi] \rightarrow \mathbb{R}^{3}$ be the helix $c(t)=(\cos t, \sin t, t)$. Calculate $\int_{c} \omega$.
5. Let $c:[0,1] \rightarrow U=\mathbb{R}^{2}-0$ be a smooth closed curve, i.e., $c(1)=c(0)$ and $c(t)=r(t)(\cos \alpha(t), \sin \alpha(t))$ be its polar coordinate description with smooth functions $r:[0,1] \rightarrow(0, \infty)$ and $\alpha:[0,1] \rightarrow \mathbb{R}$. Since c is closed, the angle difference $\alpha(1)-\alpha(0)$ must be an integer multiple of 2π, i.e., $\alpha(1)-\alpha(0)=n(c) 2 \pi$, and the integer $n(c)$ describes how many times the curve c surrounds the origin counterclockwise. $n(c)$ is called the winding number of c. Let $\omega_{0} \in \Omega^{1}(U)$ be the 1-form

$$
\omega_{0}=-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
$$

Show that we have

$$
n(c)=\frac{1}{2 \pi} \int_{c} \omega_{0}
$$

Remark: In Complex Analysis, the winding number of a a closed curve $c:[0,1] \rightarrow \mathbb{C}-0$ is defined as

$$
n(c)=\frac{1}{2 \pi i} \int_{c} \frac{1}{z} d z
$$

This exercise presents an analogue in the context of differential forms.

