Analysis III/IV (Math 3011, Math 4201)

Exercise Sheet 5

Do Exercise 3 as homework for this week. Exercises 1 and 2 should be relatively easy, but instructive.
Your homework for this week and the cumulative homework over the previous weeks, i.e.,

- Exercise 2, Sheet 1
- Exercise 2, Sheet 3
- Exercise 3, Sheet 5
will be collected on Monday, 14 November, after the lecture. Do not submit any other homework questions, but check your solutions against the weekly distributed solution sheets.

1. (Easy Warmup) Let (M, d) be a complete metric space and $x_{n} \in M$ a sequence satisfying $d\left(x_{n}, x_{n+1}\right) \leq \frac{1}{n^{2}}$. Show that x_{n} is convergent.
2. Consider the function

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq 0 \\ 0 & \text { if }(x, y)=0\end{cases}
$$

Show that f is discontinuous at $(x, y)=0$ (consider the behaviour of the function along different straight lines through the origin) but, at the same time, that f has globally well defined first partial derivatives. Can these partial derivatives be continuous?
3. Let $I \subset \mathbb{R}$ be an open interval and $F: \mathbb{R} \times I \rightarrow \mathbb{R}$ be continuous and Lipschitz continuous in the first variable, i.e., there exists $L>0$ such that

$$
\left|F\left(x_{1}, t\right)-F\left(x_{2}, t\right)\right| \leq L\left|x_{1}-x_{2}\right| \quad \text { for all } x_{1}, x_{2} \in \mathbb{R} \text { and all } t \in I .
$$

Let $t_{0} \in I$ and $x_{0} \in \mathbb{R}$ and, for $\epsilon>0$, let $I_{\epsilon}:=\left[t_{0}-\epsilon, t_{0}+\epsilon\right]$. Show that, for $\epsilon>0$ small enough, the map

$$
T: C\left(I_{\epsilon}\right) \rightarrow C\left(I_{\epsilon}\right)
$$

defined by

$$
T f(t):=x_{0}+\int_{t_{0}}^{t} F(f(s), s) d s
$$

is a contraction in the complete metric space $C\left(I_{\epsilon}\right)$ with metric $d_{\infty}(f, g)=$ $\|f-g\|_{\infty}$.
4. Let $\left(V,\|\cdot\|_{V}\right)$ and $\left(W,\|\cdot\|_{W}\right)$ be normed vector spaces and $T: V \rightarrow W$ be a linear map. Prove that the following properties are equivalent:
(i) T is a bounded linear operator.
(ii) T is continuous at $v=0 \in V$.
(iii) T is a continuous map everywhere.
5. For $p \geq 1$ let $l_{p}(\mathbb{C})=\left\{\mathbf{x}=\left.\left(x_{n}\right)\left|\sum_{n=1}^{\infty}\right| x_{n}\right|^{p}<\infty\right\}$. Note that this is a vector space since for and $x, y \geq 0$, we have

$$
(x+y)^{p} \leq(x+x)^{p}+(y+y)^{p}=2^{n}\left(x^{n}+y^{n}\right) .
$$

We define a norm $\|\cdot\|_{p}$ on $l_{p}(\mathbb{C})$ as follows:

$$
\|\mathbf{x}\|_{p}=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p}
$$

Our aim is to prove that this norm satisfies the triangle inequality for $p>1$. You may use without proof that, for $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and for $x, y \geq 0$, we have

$$
\begin{equation*}
x^{1 / p} y^{1 / q} \leq \frac{x}{p}+\frac{y}{q} . \tag{1}
\end{equation*}
$$

(This follows from $\ln ^{\prime \prime}(x)=-1 / x^{2}<0$ and is an application of the concavity of the logarithm function.)
(i) Let $p, q>1$ and $\frac{1}{p}+\frac{1}{q}=1$. Let $\mathbf{x}=\left(x_{n}\right) \in l_{p}(\mathbb{C})$ and $\mathbf{y}=\left(y_{n}\right) \in$ $l_{q}(\mathbb{C})$. Show Hölder's Inequality, i.e.,

$$
\sum_{n=1}^{\infty}\left|x_{n} y_{n}\right| \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q} .
$$

Hint: Define $\xi_{n}=\frac{\left|x_{n}\right|^{p}}{\|\mathbf{x}\|_{p}^{p}}$ and $\eta_{n}=\frac{\left|y_{n}\right|^{q}}{\|\mathbf{y}\|_{q}^{q}}$ and apply (1) to ξ_{n} and η_{n}.
(ii) Let $p>1$ and $\mathbf{x}=\left(x_{n}\right), \mathbf{y}=\left(y_{n}\right) \in l_{p}(\mathbb{C})$. Let $q>1$ such that $\frac{1}{p}+\frac{1}{q}=1$. Let $\mathbf{z}=\left(z_{n}\right)$ with $z_{n}=\left|x_{n}+y_{n}\right|^{p-1}$. Show that $\mathbf{z} \in l_{q}(\mathbf{C})$.
(iii) Derive

$$
\|\mathbf{x}+\mathbf{y}\|_{p}^{p} \leq \sum\left|x_{n}\right| \cdot\left|z_{n}\right|+\sum\left|y_{n}\right| \cdot\left|z_{n}\right|,
$$

and apply Hölder's inequality to the terms on the right hand side to obtain Minkowski's Inequality, namely,

$$
\|\mathbf{x}+\mathbf{y}\|_{p} \leq\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}
$$

Remark: Note that Minkowski's Inequality is just the triangle inequality in the normed vector space $l_{p}(\mathbf{C})$. Moreover, Hölder's Inequality in the special case $p=q=2$ is just Cauchy-Schwarz. We already saw in the lectures that Cauchy-Schwarz implies the triangle inequality.

