Analysis III/IV (Math 3011, Math 4201)

Exercise Sheet 16

Do Exercise 1 as homework for this week. This homework exercise will not be marked, but you can check your solution against the solution sheet in the following week.

1. For $a, b, c>0$ consider the ellipsoid

$$
E:=\left\{(x, y, z) \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1\right.\right\} .
$$

Let ω be the following differential form on \mathbb{R}^{3};

$$
\omega=x d y \wedge d z-y d x \wedge d z+z d x \wedge d y
$$

(a) Calculate $d \omega$.
(b) Find an almost global parametrisation of E such that the outward unit normal vector field is positively oriented. Calculate

$$
\int_{E} \omega .
$$

Hint: Think of polar coordinates on the sphere.
2. Let $U \subset \mathbb{R}^{n}$ be open and starlike and $\omega \in \Omega^{k}(U), k \geq 1$ with $d \omega=0$. The aim of this exercise is to prove Poincaré's Lemma in its general form, i.e., that there is an $\alpha \in \Omega^{k-1}(U)$ with $d \alpha=\omega$.
Henceforth we will denote the coordinate functions of $\mathbb{R} \times U$ by t, x_{1}, \ldots, x_{n}. Note that every differential form $\eta \in \Omega^{k}(\mathbb{R} \times U)$ is then of the form

$$
\begin{equation*}
\eta=\eta_{1}+d t \wedge \eta_{2} \tag{1}
\end{equation*}
$$

where

$$
\eta_{1}=\sum_{i_{1}<\cdots<i_{k}} f_{i_{1}, \ldots, i_{k}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}
$$

and

$$
\eta_{2}=\sum_{j_{1}<\cdots<j_{k-1}} g_{j_{1}, \ldots, j_{k-1}} d x_{j_{1}} \wedge \cdots \wedge d x_{j_{k-1}},
$$

with $f_{i_{1}, \ldots, i_{k}}, g_{j_{1}, \ldots, j_{k-1}} \in C^{\infty}(\mathbb{R} \times U)$.
Since U is starlike, there is a point $p \in U$ and a map $H: \mathbb{R} \times U \rightarrow \mathbb{R}^{n}$, defined by $H(t, x)=p+t(x-p)$, such that $H(t, x) \in U$ for all $t \in[0,1]$ and $x \in U$ (since $H([0,1], x)$ is the straight line segment from p to x). Observe that $H(0, x)=p$ and $H(1, x)=x$. Let $i_{t}: U \rightarrow \mathbb{R} \times U$ be the inclusion of U into $\mathbb{R} \times U$ at "level" t, i.e., $i_{t}(x)=(t, x)$.

Finally, let $I: \Omega^{k}(\mathbb{R} \times U) \rightarrow \Omega^{k-1}(U)$ be defined by

$$
(I \eta)_{x}\left(v_{1}, \ldots, v_{k-1}\right)=\int_{0}^{1} \eta_{2}(t, x)\left(D i_{t}(x)\left(v_{1}\right), \ldots, D i_{t}(x)\left(v_{k}\right)\right) d t
$$

if $\eta=\eta_{1}+d t \wedge \eta_{2}$ as given in (1).
(a) Prove that $i_{1}^{*} \eta-i_{0}^{*} \eta=d(I \eta)+I(d \eta)$.
(b) Using (a) and $H \circ i_{1}=$ id and $H \circ i_{0}=$ constant, show that

$$
\omega=d \alpha
$$

with $\alpha=I\left(H^{*} \omega\right)$.
Hint: Note that if $F=$ constant, then $D F(x)=0$ for all x, and therefore $F^{*} \omega=0$.

