Do Exercises 2 and 3 as homework for this week. These exercises are very useful to become acquainted with the compatibitily condition and with the concept of orientability.
This homework will be collected on Wednesday, 29 February, after the lecture. Do not submit any other homework questions, but check your solutions with the solution sheets.
There is also still strong need for most of you to exercise on regular values. This is the topic of the highly recommended Exercise 1.

1. Let $A:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \geq 0, z \neq 0\right\}$ and $f: A \rightarrow \mathbb{R}^{3}$ be defined by

$$
f(x, y, z)=\left(x^{2}-y^{3}, y z, z^{3}\right)
$$

(a) Show that

$$
\operatorname{im}(f)=f(A)=\left\{(u, v, w) \in \mathbb{R}^{3} \mid w \neq 0, u \geq-\frac{v^{3}}{w}\right\} .
$$

(b) Show that $(u, v, w) \in \mathbb{R}^{3}$ is a regular value of f if and only if

$$
(w=0) \quad \text { or } \quad\left(w \neq 0 \text { and } u \neq-\frac{v^{3}}{w}\right)
$$

2. Let $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid\|(x, y, z)\|_{2}=1\right\}$, and $\varphi_{\alpha}, \varphi_{\beta}: \mathbb{R}^{2} \rightarrow S^{2}$ be an atlas of stereographic projections, i.e.,

$$
\begin{aligned}
\varphi_{\alpha}\left(u_{1}, u_{2}\right) & =\frac{1}{u_{1}^{2}+u_{2}^{2}+1}\left(2 u_{1}, 2 u_{2}, u_{1}^{2}+u_{2}^{2}-1\right) \\
\varphi_{\beta}\left(v_{1}, v_{2}\right) & =\frac{1}{v_{1}^{2}+v_{2}^{2}+1}\left(2 v_{1}, 2 v_{2}, 1-v_{1}^{2}-v_{2}^{2}\right)
\end{aligned}
$$

Recall that the coordinate change $\varphi_{\beta}^{-1} \circ \varphi_{\alpha}: \mathbb{R}^{2}-0 \rightarrow \mathbb{R}^{2}-0$ is given by

$$
\varphi_{\beta}^{-1} \circ \varphi_{\alpha}\left(u_{1}, u_{2}\right)=\frac{1}{u_{1}^{2}+u_{2}^{2}}\left(u_{1}, u_{2}\right) .
$$

(a) Let

$$
\begin{aligned}
\omega_{\alpha} & =\frac{1}{u_{1}^{2}}\left(u_{1} d u_{1}+u_{2} d u_{2}\right) \\
\omega_{\beta} & =-\frac{1}{v_{1}^{2}}\left(v_{1} d v_{1}+v_{2} d v_{2}\right)
\end{aligned}
$$

Then $\omega_{\alpha}, \omega_{\beta} \in \Omega^{1}\left(\mathbb{R}^{2}-0\right)$. Check that these two differential forms satisfy the compatibility condition, i.e., are the pullbacks of a globally defined differential 1-form on S^{2}.
(b) Check that the differential forms $d \omega_{\alpha}$ and $d \omega_{\beta}$ from (a) are the pullbacks of the global differential form $-\frac{2}{x^{3}} d x \wedge d z$ on S^{2}.
3. (a) Let $v=(x, y, z)^{\top}$ and $w=(a, b, c)^{\top}$ be linear independent. Show that the ordered basis $v \times w, v, w$ carries the same orientation as e_{1}, e_{2}, e_{3}.
(b) Let

$$
\varphi:(-1,1) \times \mathbb{R} \rightarrow \mathbb{R}^{3}, \quad \varphi(s, t)=\left((2+s) \cos t,(2+s) \sin t, s^{2}\right)
$$

and $M=\varphi((-1,1) \times[0,2 \pi])$. We assume M carries the orientation given by the atlas consisting of the two local coordinate patches

$$
\begin{aligned}
& \varphi_{1}=\left.\varphi\right|_{(-1,1) \times(0,2 \pi)}:(-1,1) \times(0,2 \pi) \rightarrow \mathbb{R}^{3}, \\
& \varphi_{2}=\left.\varphi\right|_{(-1,1) \times(-\pi, \pi)}:(-1,1) \times(-\pi, \pi) \rightarrow \mathbb{R}^{3} .
\end{aligned}
$$

You don't need to prove that the coordinate change is orientation preserving. Find an implicit description of M, i.e., find a function

$$
f:\left\{(x, y, z) \mid 1<\sqrt{x^{2}+y^{2}}<3\right\} \rightarrow \mathbb{R}
$$

such that 0 is a regular value of f and $M \subset f^{-1}(0)$. You don't need to prove in full that $M=f^{-1}(0)$.
(c) Let M be the manifold in (b). Show that e_{3} is a unit normal vector of M at the point $(2,0,0) \in M$. Decide whether e_{3} is positively oriented with respect to the orientation induced by the atlas $\left\{\varphi_{1}, \varphi_{2}\right\}$.

