Do Exercises 2 and 5 as homework for this week. These homework exercises will not be marked, but you can check your solutions against the solution sheet in the following week.

1. (Easy Warmup!) Determine the critical points of
(a) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $f(x, y)=\left(x^{2}, 2 x+e^{x} \cos (y), x y \sin (x y)\right)$.
(b) $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by $g(x, y, z)=\left(2 x^{2}+(y-1)^{2}, z(\cos (y)-1)\right)$.
2. Let $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{4}+y^{2}+2 z^{2}=4\right\}$.
(a) Show that M is a manifold.
(b) For $p=(-1,1,1)$, determine the tangent space $T_{p} M$.
3. Let $A:(-\epsilon, \epsilon) \rightarrow G L(n, \mathbb{R})$ be a smooth curve.
(a) Prove that

$$
(\operatorname{det} A)^{\prime}(t)=(\operatorname{det} A(t)) \operatorname{tr}\left(A(t)^{-1} A^{\prime}(t)\right)
$$

Hint: Let $a_{1}(t), \ldots, a_{n}(t)$ denote the columns of $A(t)$. You may use the product rule for n factors to conclude that,

$$
(\operatorname{det} A)^{\prime}(t)=\sum_{j=1}^{n} \operatorname{det}\left(a_{1}(t) \ldots a_{j}^{\prime}(t) \ldots a_{n}(t)\right) .
$$

Use the fact that $a_{1}(t), \ldots, a_{n}(t)$ form a basis of \mathbb{R}^{n} to write $a_{j}^{\prime}(t)$ in terms of $a_{1}(t), \ldots, a_{n}(t)$, i.e., $A^{\prime}(t)=A(t) \cdot\left(\alpha_{i j}(t)\right)$, and conclude that

$$
(\operatorname{det} A)^{\prime}(t)=\operatorname{det} A(t) \cdot \operatorname{tr}\left(\alpha_{i j}(t)\right)
$$

(b) Use (a) and Exercise 4, Sheet 13, to show that

$$
T_{\mathrm{Id}} S L(n, \mathbb{R})=\{B \in M(n, \mathbb{R}) \mid \operatorname{tr} B=0\}
$$

where Id is the identity matrix in $S L(n, \mathbb{R})$.
4. Show that

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid(x-1)^{2}+y^{2}=5, y=z\right\}
$$

is a compact manifold and the extremal values of $f(x, y, z)=x^{2}+y^{2}+z$ on M are 11 and 1 .
5. (a) Find the point of the sphere $x^{2}+y^{2}+z^{2}=1$ which is at the greatest distance from the point $(1,2,3) \in \mathbb{R}^{3}$.
(b) Find the rectangle of greatest perimeter inscribed in the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

6. Let $p, q>1$ such that $\frac{1}{p}+\frac{1}{q}=1$.
(a) Show that

$$
1 \leq \frac{1}{p} u^{p}+\frac{1}{q} v^{q}
$$

for all positive numbers u, v with $u \cdot v=1$.
Hint: Lagrange multipliers.
(b) Show that

$$
u v \leq \frac{1}{p} u^{p}+\frac{1}{q} v^{q}
$$

for all $u, v \geq 0$.
Remark: Note that this exercise provides an alternative proof of (1) from Exercise 5, Sheet 5.

