Analysis III/IV (Math 3011, Math 4201)

Exercise Sheet 13

Do Exercise 2 as homework for this week. Exercise 4 is also interesting and highly recommended.
Your homework for this week and the cumulative homework over the previous weeks, i.e.,

- Exercise 2, Sheet 11
- Exercise 4, Sheet 11
- Exercise 2, Sheet 13
will be collected on Wednesday, 8 February, after the lecture. Do not submit any other homework questions, but check your solutions against the weekly distributed solution sheets.

1. The sphere $S^{n}=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|_{2}=1\right\}$ is a manifold of dimension n. Let $N=(0, \ldots, 0,1), S=(0, \ldots, 0,-1) \in S^{n}$ For any two points $P, Q \in \mathbb{R}^{n+1}$, let

$$
L_{P, Q}=\{\lambda P+(1-\lambda) Q \mid \lambda \in \mathbb{R}\}
$$

be the straight Euclidean line through P and Q. Two coordinate patches of S^{n} are given via stereographic projection by

$$
\varphi_{1}: \mathbb{R}^{n} \rightarrow S^{n}, \quad \varphi_{1}(x)=L_{(x, 0), N} \cap\left(S^{n}-\{N\}\right)
$$

and

$$
\varphi_{2}: \mathbb{R}^{n} \rightarrow S^{n}, \quad \varphi_{2}(x)=L_{(x, 0), S} \cap\left(S^{n}-\{S\}\right) .
$$

(You don't need to show this!) Calculate the images $\varphi_{1}\left(x_{1}, \ldots, x_{n}\right)$ and $\varphi_{2}\left(x_{1}, \ldots, x_{n}\right)$ explicitly as well as the coordinate change

$$
\varphi_{2}^{-1} \circ \varphi_{1}: \mathbb{R}^{n}-\{0\} \rightarrow \mathbb{R}^{n}-\{0\}
$$

Show that $D\left(\varphi_{2}^{-1} \circ \varphi_{1}\right)(x)=\frac{1}{\|x\|_{2}^{2}}\left(\operatorname{Id}_{n}-2 \frac{1}{\|x\|_{2}^{2}} x^{\top} x\right)$, where $x^{\top} x=\left(x_{i} x_{j}\right)_{1 \leq i, j \leq n}$. (The special case S^{2} was discussed in the lecture.)
2. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$, defined by

$$
F(x, y, z)=z^{2}+\left(\sqrt{x^{2}+y^{2}}-5\right)^{2}
$$

(a) Show that 4 is a regular value of F, i.e., $M=F^{-1}(4)$ is a 2 dimensional manifold.
(b) Let $\varphi: U=(0,2 \pi) \times(0,2 \pi) \rightarrow \mathbb{R}^{3}$ be defined by

$$
\varphi(\alpha, \beta)=((5+2 \cos \beta) \cos \alpha,(5+2 \cos \beta) \sin \alpha, 2 \sin \beta) .
$$

Show that $\varphi(U) \subset M$, and check that φ is an almost global coordinate patch of M.
(c) Let $\omega=x d y \wedge d z-y d x \wedge d z+z d x \wedge d y \in \Omega^{2}\left(\mathbb{R}^{3}\right)$. Calculate $\varphi^{*} d x$, $\varphi^{*} d y, \varphi^{*} d z$ and $\varphi^{*} \omega$.
3. Let $U \subset \mathbb{R}^{k}$ be open and $f: U \rightarrow \mathbb{R}$ be smooth. Show that the graph of f is a k-dimensional manifold in \mathbb{R}^{k+1}.
4. This exercise shows that the matrix group $S L(n, \mathbb{R})=\{A \in M(n, \mathbb{R}) \mid$ $\operatorname{det} A=1\} \subset \mathbb{R}^{n^{2}}$ is a smooth manifold. Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be a homogeneous polynomial of degree $m \geq 1$. From Exercise 3, Sheet 7, recall Euler's relation

$$
\langle\operatorname{grad} f(x), x\rangle=m f(x),
$$

where

$$
\operatorname{grad} f(x)=\left(\frac{\partial f}{\partial x_{1}}(x), \frac{\partial f}{\partial x_{2}}(x), \ldots, \frac{\partial f}{\partial x_{k}}(x)\right) .
$$

(a) Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be a homogeneous polynomial of degree $m \geq 1$. Show that every value $y \neq 0$ is a regular value of f.
(b) Use the fact that $\operatorname{det} A$ is a homogeneous polynomial in the entries of A in order to show that $S L(n, \mathbb{R})$ is a smooth manifold in $\mathbb{R}^{n^{2}}$. What is its dimension?

