Analysis III/IV (Math 3011, Math 4201)

Exercise Sheet 11

Do Exercises 2 and 4 as homework for this week. The cumulative homework over the coming weeks will be collected and marked in a few weeks time. Try also to do Exercise 5, even though this exercise will not be marked. Have a look at all solutions when you receive the solution sheet the following week.

1. This is a little warmup exercise about exterior derivatives, wedge products and pullbacks.
(a) Let ω_{1} and ω_{2} be two differential forms on $U \subset \mathbb{R}^{n}$. Assume that ω_{1} is closed and ω_{2} is exact. Show that $\omega_{1} \wedge \omega_{2}$ is exact.
(b) Let $U=\mathbb{R}^{2} \times(0, \infty)$ and $\varphi: U \rightarrow U$,

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\left(y_{1}, y_{2}, y_{3}\right)=\left(e^{x_{3}} x_{1}, e^{-x_{3}} x_{2}, x_{3}^{2}\right) .
$$

Let $\omega=y_{1}^{2} y_{2} d y_{1} \wedge d y_{3} \in \Omega^{2}(U)$. Calculate $d \omega$ and $\varphi^{*}(d \omega)$. Then calculate $\varphi^{*}(\omega)$ and $d \varphi^{*}(\omega)$. (If you didn't make a mistake, you should have $\varphi^{*}(d \omega)=d \varphi^{*}(\omega)$.)
2. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(y_{1}, y_{2}, y_{3}\right)=\left(x_{1} \cos x_{2}, x_{1} \sin x_{2}, x_{3}\right) .
$$

(a) Calculate the pullback $\omega=f^{*}\left(y_{3} d y_{1} \wedge d y_{2} \wedge d y_{3}\right)$.
(b) Calculate $\int_{(1,2) \times(0,2 \pi) \times(0,1)} \omega$.
3. Prove the Transformation Rule in the following special case: Let $U=$ $\times_{i=1}^{n}\left(a_{i}, b_{i}\right)$ and $V=\times_{i=1}^{n}\left(c_{i}, d_{i}\right)$ and $\varphi: U \rightarrow V$ a diffeomorphism of the form

$$
\varphi\left(x_{1}, \ldots, x_{n}\right)=\left(\varphi_{1}\left(x_{1}\right), \ldots, \varphi_{n}\left(x_{n}\right)\right) .
$$

Let $f: V \rightarrow \mathbb{R}$ be a bounded integrable function. Using Fubini and the one-dimensional Substitution Rule for integrals, show that

$$
\int_{V} f(y) d y=\int_{U} f \circ \varphi(x)|\operatorname{det} D \varphi(x)| d x
$$

4. Let A_{1}, A_{2}, \ldots be a countable sequence of set of measure zero in \mathbb{R}^{n}. Show that the union $\bigcup_{i=1}^{\infty} A_{i}$ is, again, a set of measure zero. Carefully justify all your arguments. In particular, when giving a covering of the union, explain in detail why the sets in this covering are countably many.
5. Let $\omega=\frac{d x \wedge d y}{y^{2}}$ be the volume form of the hyperbolic upper half plane \mathbb{H}^{2}. Check the following facts:
(a) Let $f: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}, f(z)=z+b, b \in \mathbb{R}$. Show that $f^{*} \omega=\omega$.
(b) Let $g: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}, g(z)=a z, a>0$. Show that $g^{*} \omega=\omega$.
(c) Let $h: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}, h(z)=1 / z$. Show that $h^{*} \omega=\omega$.

Since the maps f, g, h generate the Möbius transforms $k: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$, $k(z)=\frac{a z+b}{c z+d}$ with $a, b, c, d \in \mathbb{R}$ and $a d-b c=1$, we conclude from the above calculations that the Möbius transforms preserve the volume form ω of the hyperbolic upper half plane, i.e., the ω-volume (= hyperbolic area) of a set is preserved under Möbius transforms.
Hint: Write the functions f, g, h first as maps $\mathbb{R} \times(0, \infty) \rightarrow \mathbb{R} \times(0, \infty)$, before you start your calculations.

