
Analysis III/IV (Math 3011, Math 4201)

Exercise Sheet 10 14.12.2011

Do Exercises 1, 2 and 4 as homework over Christmas. Exercise 4(b),(c)
might be a bit more difficult, but is very worth trying. These homework
exercises will not be marked, but you can check your solutions against the
solution sheet. It is really important that you constantly work on homework
questions to stay up to date with the course.

1. (Easy start) Let f : R
3 → R

3 be defined by

f(x1, x2, x3) = (y1, y2, y3) = (x1 cos x2, x1 sin x2, x
2
3).

Calculate the pullback ω = f∗(y3dy1 ∧ dy2 ∧ dy3).

2. Let U, V ⊂ R
n be open and ϕ : U → V be a diffeomorphism with

component functions ϕ = (ϕ1, . . . , ϕn). Let x1, . . . , xn be the coordinates
in U and y1, . . . , yn in V . For x ∈ U , show that

(ϕ∗(dy1 ∧ dy2 ∧ · · · ∧ dyn))x = detDϕ(x)(dx1 ∧ dx2 ∧ · · · ∧ dxn)x.

Hint: You may use the fact that, for every permutation σ ∈ Sn, we have

dxσ(1) ∧ · · · ∧ dxσ(n) = sign(σ)dx1 ∧ · · · ∧ dxn,

and that the determinant of A = (aij) is given by det A =
∑

σ∈Sn
sign(σ)a1σ(1) · · · anσ(n).

3. Let U1, U2, U3 be three starlike subsets of R
n. Suppose that the two

intersections U1∩U2 and U2∩U3 are pathwise connected and U1∩U3 = ∅.
Let ω ∈ Ω1(U1 ∪ U2 ∪ U3) be closed. Show that ω is exact.

4. One important method in the calculation of de-Rham cohomologies is to
start with the de-Rham cohomologies of easier domains and then to de-
rive from them the de-Rham cohomologies of more complicated domains.
A very useful tool in so doing is the Mayer-Vietoris sequence. Mayer-
Vietoris allows us in many cases to calculate the deRham-cohomologies
of a union of two sets from the knowledge of the de-Rham cohomologies
of these two sets and their intersection. This exercise leads you through
its core arguments. We may see later in the course (if time permits)
how this can be used for calculations of de-Rham cohomologies. Let
V ⊂ U ⊂ R

n be open. The restriction of a differential k-form ω ∈ Ωk(U)
to V is denoted by ω|V .

Let U1, U2 ⊂ R
n be open and U = U1 ∪ U2. Consider the sequence of

maps

Ωk(U)
Ik

−−−−→ Ωk(U1) × Ωk(U2)
Jk

−−−−→ Ωk(U1 ∩ U2),

where Ik(ω) = (ω|U1
, ω|U2

) and Jk(ω1, ω2) = ω1|U1∩U2
− ω2|U1∩U2

. Show
the following facts:



(a) Ik is injective.

(b) We have

im Ik = {Ik(ω) | ω ∈ Ωk(U)} = ker Jk = {(ω1, ω2) | Jk(ω1, ω2) = 0}.

(c) Jk is surjective. For this part, you may use without proof that
there exist two smooth functions p1, p2 ∈ C∞(U) with p1, p2 ≥ 0,
p1 + p2 = 1, and

supp(pj) = {x ∈ U | p(x) 6= 0} ⊂ Uj,

where U = U ∪ ∂U denotes the closure of the set U . Such a family
of functions p1, p2 is called a partition of unity for the open cover
{U1, U2} of U .

5. Let U ⊂ R
2 be an open set and F : U → R

2 be a smooth vector field,
i.e., F (x, y) = (f(x, y), g(x, y)) with f, g ∈ C∞(U). Let D ⊂ U be a
closed disk of radius r > 0 around p = (x0, y0) ∈ U and c : [0, 2π] → U ,
c(t) = p + (r cos(t), r sin(t)) be a parametrisation of ∂D. Assume that F

does not vanish at any point of ∂D. We call

n(F,D) :=
1

2π

∫
c

F ∗ω0

the index of F in D, where ω0 ∈ Ω1(U) was defined in Exercise 5 of
Sheet 7. Geometrically, the index describes how many times the vector
F (x, y) ∈ R

2 − 0 rotates around the origin, as (x, y) runs once counter-
clockwise around ∂D (and n(F,D) is, therefore, closely related to the
winding number and an integer). Prove the following fact:

If n(F,D) 6= 0, then there exists some point q ∈ D such that F (q) = 0.

Hint: Assume that F doesn’t have zeroes in D and introduce the free
homotopy H(t, s) = F ((1 − s)c(t) + sp).

Remark: In fact, the invariant n(F,D) counts simple zeroes of the
vector field inside D. We call a point p ∈ U with F (p) = 0 a simple

zero of F , if detDF (p) 6= 0. Since simple zeroes are isolated, there are
only finitely many of them in compact disks. We call a simple zero p a
positive zero if detDF (p) > 0, and negative if det DF (p) < 0. Assuming,
F : U → R

2 has only simple zeroes in a disk D ⊂ U , none of which lying
on ∂D. Then we have

n(F,D) = P − N,

where P is the number of positive zeroes in D and N the number of
negative zeroes in D. (Of course, you don’t need to prove this, even
though the techniques are all there to do so!)

You may have seen an analogous concept in Complex Analysis, where a

certain integral, namely 1
2πi

∫
∂D

f ′(z)
f(z) dz, counts the number of zeroes of

a holomorphic function f . This analogy is another example for so many
hidden non-trivial connections between the concepts of different courses,
which makes maths so exciting and beautiful.



Merry Christmas and Happy New Year!!!

(taken from http://www.netmums.com/activities/pictures-to-print/)


