Algebraic Geometry III/IV

Solutions, set 9 .

Exercise 12.

(a) The polynomial $F(X, Y, Z)$ is given by

$$
F(X, Y, Z)=a X^{2}+b Y^{2}+c Z^{2}+2 d X Y+2 e X Z+2 f Y Z
$$

It is easy to see that the condition $(x, y, z) \neq 0$ and $F_{X}(x, y, z)=$ $F_{Y}(x, y, z)=F_{Z}(x, y, z)=0$ is equivalent to

$$
\begin{aligned}
& 2 a x+2 d y+2 e z=0, \\
& 2 b y+2 d x+2 f z=0, \\
& 2 c z+2 e x+2 f y=0,
\end{aligned}
$$

which, in turn, is equivalent to

$$
\left(\begin{array}{lll}
a & d & e \\
d & b & f \\
e & f & c
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0 .
$$

This means, we have a nontrivial simultaneous solution $F_{X}(x, y, z)=$ $F_{Y}(x, y, z)=F_{Z}(x, y, z)=0$ if and only if A has a nontrivial kernel, i.e., if and only if $\operatorname{det} A=0$. But any such solution satisfies obviously also $F(x, y, z)=0$, i.e., is a singular point of C_{F}, and vice versa.
(b) The tangent line of C_{F} at $[\alpha, \beta, \gamma] \in C_{F}$ is given by the equation

$$
F_{X}(\alpha, \beta, \gamma) X+F_{Y}(\alpha, \beta, \gamma) Y+F_{Z}(\alpha, \beta, \gamma) Z=0
$$

i.e.,

$$
(2 a \alpha+2 d \beta+2 e \gamma) X+(2 b \beta+2 d \alpha+2 f \gamma) Y+(2 c \gamma+2 e \alpha+2 f \beta) Z=0,
$$ i.e.,

$$
\left(\begin{array}{lll}
\alpha & \beta & \gamma
\end{array}\right) A\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=0
$$

(c) We conclude from (b) that

$$
\mathcal{T}(C)=\left\{C_{H} \left\lvert\, H(X, Y, Z)=\left(\begin{array}{lll}
\alpha & \beta & \gamma
\end{array}\right) A\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)\right. \text { and }[\alpha, \beta, \gamma] \in C\right\} .
$$

This implies that
$C^{*}=\Phi(\mathcal{T}(C))=\left\{[x, y, z] \in \mathbb{P}_{\mathbb{C}}^{2} \mid(x y z)=(\alpha \beta \gamma) A\right.$ for some $\left.[\alpha, \beta, \gamma] \in C\right\}$, i.e.,

$$
C^{*}=\left\{[x, y, z] \in \mathbb{P}_{\mathbb{C}}^{2} \mid\left[(x y z) A^{-1}\right] \in C\right\}
$$

Now we have for every $(x y z) \neq 0$, using $A^{\top}=A$,

$$
\begin{aligned}
{\left[(x y y) A^{-1}\right] \in C } & \Leftrightarrow\left(\begin{array}{ll}
x & y \\
\hline
\end{array}\right) A^{-1} A\left((x y z) A^{-1}\right)^{\top} \\
& \Leftrightarrow\left(\begin{array}{lll}
x & y & z
\end{array}\right) A^{-1}\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right), \\
& \Leftrightarrow[x, y, z] \in C_{G}
\end{aligned}
$$

with

$$
G(X, Y, Z)=\left(\begin{array}{lll}
X & Y & Z
\end{array}\right) A^{-1}\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right) .
$$

This shows that $C^{*}=C_{G}$.

Exercise 13. Recall that $F(X, Y, Z)=3 Y^{4}+4 Y^{3} Z+X^{4}$.
(a) We have $F(0,1,0)=3 \neq 0$, i.e., $[0,1,0] \notin C_{F}$. This guarantees that the map $\pi: C_{F} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}, \pi([a, b, c])=[a, c]$ is well defined.
(b) We have $F_{Y}(X, Y, Z)=12 Y^{2}(Y+Z)=0$. So the solutions of $F(P)=$ $F_{Y}(P)=0$ are given by

$$
R=\{[0,0,1],[\pm 1,1,-1],[\pm i, 1,-1]\} \subset C_{F} \cap C_{F_{Y}},
$$

and

$$
B=\pi(R)=\{[0,1],[\pm 1,-1],[\pm i,-1]\}
$$

We see that B contains 5 points. The y-coordinate of the each of the points in $\pi^{-1}([0,1])$ are given by the equation $y^{3}(3 y+4)=0$, so we have $\left|\pi^{-1}([0,1])\right|=2$. The y-coordinate of each of the points in $\pi^{-1}([x,-1])$ with $x \in\{ \pm 1, \pm i\}$ satisfies the equation $3 y^{4}+4 y^{3}+1=(y+1)^{2}\left(3 y^{2}-\right.$ $2 y+1)=0$, so we have $\left|\pi^{-1}([x,-1])\right|=3$ for all $x \in\{ \pm 1, \pm i\}$.
(c) Since the singularities are a subset of R, we conclude from $F_{X}(X, Y, Z)=$ $3 X^{3}$ and $F_{Z}(X, Y, Z)=4 Y^{3}$ that the only point in $\operatorname{Sing}\left(C_{F}\right)$ is $P=$ $[0,0,1]$, which is one of the two points in $\pi^{-1}([0,1])$.
(d) We only need to carry out the blow-up procedure in the singular point P. We first choose affine coordinates via the identification $(x, y) \mapsto$ $[x, y, 1]$ and obtain the affine polynomial

$$
f(x, y)=F(x, y, 1)=3 y^{4}+4 y^{3}+x^{4} .
$$

We see that we have a triple tangent line given by $y=0$. So we can blow-up in U_{0}. We set $(x, y)=\left(x_{1}, x_{1} y_{1}\right)$ and obtain

$$
f\left(x_{1}, x_{1} y_{1}\right)=x_{1}^{3}\left(3 x_{1} y_{1}^{4}+4 y_{1}^{3}+x_{1}\right),
$$

so the strict transform of f in U_{0} is

$$
f^{(1)}\left(x_{1}, y_{1}\right)=3 x_{1} y_{1}^{4}+4 y_{1}^{3}+x_{1} .
$$

The preimages of $(x, y)=(0,0)$ under the strict transform are given by $x_{1}=x=0$ and $f^{(1)}\left(0, y_{1}\right)=4 y_{1}^{3}=0$, i.e., only $\left(x_{1}, y_{1}\right)=(0,0)$. This is a non-singular point of $C_{f^{(1)}}$ since

$$
f_{x_{1}}^{(1)}(0,0)=1 .
$$

So the blow-up process stops after one blow-up with a non-singular model $\psi: \widetilde{C} \rightarrow C_{F}$.
(e) Since B contains 5 points, we know from a result in the lectures that there exists a triangulation \mathcal{T} of $\mathbb{P}_{\mathbb{C}}^{1}$ with the five points of B, and $3 \cdot 5-6=9$ edges and $2 \cdot 5-4=6$ triangles. The preimage $\pi^{-1}(B) \subset C_{F}$ contains $1 \cdot 2+4 \cdot 3=14$ points, and the preimage of P under the blowup procedure $\psi: \widetilde{C} \rightarrow C_{F}$ consists of only one point. Since $\operatorname{deg} F=4$, we end up with an induced triangulation of \widetilde{C} with $V=14$ vertices,
$E=4 \cdot 9=36$ edges and $F=4 \cdot 6=24$ triangles. This implies that \widetilde{C} has the Euler number

$$
\chi(\widetilde{C})=V-E+F=14-36+24=2 .
$$

(f) Using the relation $\chi(\widetilde{C})=2-2 g(\widetilde{C})$, we conclude that the genus of the non-singular model \widetilde{C} is

$$
g(\widetilde{C})=1-\frac{\chi(\widetilde{C})}{2}=1-\frac{2}{2}=0
$$

Exercise 14. Recall that $F(X, Y, Z)=Y^{4}-2 X^{2} Y^{2}+X Z^{3}$.
(a) We have $F(0,1,0)=1 \neq 0$, i.e., $[0,1,0] \notin C_{F}$. This guarantees that the map $\pi: C_{F} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}, \pi([a, b, c])=[a, c]$ is well defined.
(b) We have $F_{Y}(X, Y, Z)=4 Y(Y+X)(Y-X)=0$. So the solutions of $F(P)=F_{Y}(P)=0$ are given by

$$
R=\left\{[0,0,1],[1,0,0],[\xi, \pm \xi, 1] \text { with } \xi^{3}=1\right\} \subset C_{F} \cap C_{F_{Y}},
$$

eight points in total, and

$$
B=\pi(R)=\left\{[0,1],[1,0],[\xi, 1] \text { with } \xi^{3}=1\right\},
$$

five points in total. The y-coordinate of the each of the points in $\pi^{-1}([0,1])$ are given by the equation $y^{4}=0$, so we have $\left|\pi^{-1}([0,1])\right|=1$. The y-coordinate of the each of the points in $\pi^{-1}([1,0])$ are given by the equation $y^{2}\left(y^{2}-2\right)=0$, so we have $\left|\pi^{-1}([0,1])\right|=3$. The y-coordinate of each of the points in $\pi^{-1}([\xi, 1])$ with $\xi^{3}=1$ satisfies the equation $y^{4}-2 \xi^{2} y^{2}+\xi=(y-\xi)^{2}(y+\xi)^{2}=0$, so we have $\left|\pi^{-1}([\xi, 1])\right|=2$. So there are in total $1+3+3 \cdot 2=10$ points in $\pi^{-1}(B)$.
(c) Since the singularities are a subset of R, we conclude from $F_{X}(X, Y, Z)=$ $-4 X Y^{2}+Z^{3}$ and $F_{Z}(X, Y, Z)=3 X Z^{2}$ that the only point in $\operatorname{Sing}\left(C_{F}\right)$ is $P=[1,0,0]$, since $F_{X}(0,0,1)=1 \neq 0$ and $F_{Z}(\xi, \pm \xi, 1)=3 \xi \neq 0$.
(d) We only need to carry out the blow-up procedure in the singular point P. We first choose affine coordinates via the identification $(x, y) \mapsto$ $[1, x, y]$ and obtain the affine polynomial

$$
f(x, y)=F(1, x, y)=x^{4}-2 x^{2}+y^{3} .
$$

We see that we have a triple tangent line given by $x=0$. So we need to blow-up in U_{1}. We set $(x, y)=\left(x_{1} y_{1}, y_{1}\right)$ and obtain

$$
f\left(x_{1} y_{1}, y_{1}\right)=y_{1}^{2}\left(x_{1}^{4} y_{1}^{2}-2 x_{1}^{2}+y_{1}\right)
$$

so the strict transform of f in U_{1} is

$$
f^{(1)}\left(x_{1}, y_{1}\right)=x_{1}^{4} y_{1}^{2}-2 x_{1}^{2}+y_{1} .
$$

The preimages of $(x, y)=(0,0)$ under the strict transform are given by $y_{1}=y=0$ and $f^{(1)}\left(x_{1}, 0\right)=-2 x_{1}^{2}=0$, i.e., only $\left(x_{1}, y_{1}\right)=(0,0)$. This is a non-singular point of $C_{f^{(1)}}$ since

$$
f_{y_{1}}^{(1)}(0,0)=1 .
$$

So the blow-up process stops after one blow-up with a non-singular model $\psi: \widetilde{C} \rightarrow C_{F}$.
(e) Since B contains 5 points, we know from a result in the lectures that there exists a triangulation \mathcal{T} of $\mathbb{P}_{\mathbb{C}}^{1}$ with the five points of B, and $3 \cdot 5-6=9$ edges and $2 \cdot 5-4=6$ triangles. The preimage $\pi^{-1}(B) \subset C_{F}$ contains 10 points, and the preimage of P under the blow-up procedure $\psi: \widetilde{C} \rightarrow C_{F}$ consists of only one point. Since $\operatorname{deg} F=4$, we end up with an induced triangulation of \widetilde{C} with $V=10$ vertices, $E=4 \cdot 9=36$ edges and $F=4 \cdot 6=24$ triangles. This implies that \widetilde{C} has the Euler number

$$
\chi(\widetilde{C})=V-E+F=10-36+24=-2 .
$$

(f) Using the relation $\chi(\widetilde{C})=2-2 g(\widetilde{C})$, we conclude that the genus of the non-singular model \widetilde{C} is

$$
g(\widetilde{C})=1-\frac{\chi(\widetilde{C})}{2}=1-\frac{-2}{2}=2
$$

Exercise 15. Recall that $F(X, Y, Z)=X^{5}+3 Y^{5}-5 Y^{3} Z^{2}$.
(a) We have $F(0,1,0)=3 \neq 0$, i.e., $[0,1,0] \notin C_{F}$. This guarantees that the map $\pi: C_{F} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}, \pi([a, b, c])=[a, c]$ is well defined.
(b) We have $F_{Y}(X, Y, Z)=15 Y^{2}(Y-Z)(Y+Z)=0$. So the solutions of $F(P)=F_{Y}(P)=0$ are given by

$$
R=\left\{[0,0,1],[\alpha, 1,1],[-\alpha,-1,1] \text { with } \alpha^{5}=2\right\} \subset C_{F} \cap C_{F_{y}},
$$

and

$$
B=\pi(R)=\left\{[0,1],[\pm \alpha, 1] \text { with } \alpha^{5}=2\right\}
$$

We see that B contains 11 points and so does R. The y-coordinate of the each of the points in $\pi^{-1}([0,1])$ are given by the equation $y^{3}\left(3 y^{2}-\right.$ $5)=0$, so we have $\left|\pi^{-1}([0,1])\right|=3$. The y-coordinate of each of the points in $\pi^{-1}([\alpha, 1])$ with $\alpha^{5}=2$ satisfies the equation $3 y^{5}-5 y^{3}+2=$ $(y-1)^{2}\left(3 y^{3}+6 y^{2}+4 y+2\right)=0$. Note that $y=1$ is not a solution of $g(y)=3 y^{3}+6 y^{2}+4 y+2$. Moreover, we have for the discriminant $D(g)=R\left(g, g^{\prime}\right)$, where $R(g, h)$ is the resultant of g, h,

$$
D(g)=R\left(g, g^{\prime}\right)=\operatorname{det}\left(\begin{array}{ccccc}
2 & 4 & 6 & 3 & 0 \\
0 & 2 & 4 & 6 & 3 \\
4 & 12 & 9 & 0 & 0 \\
0 & 4 & 12 & 9 & 0 \\
0 & 0 & 4 & 12 & 9
\end{array}\right)=900 \neq 0
$$

so $g(y)$ does not have multiple roots and we have $\left|\pi^{-1}([\alpha, 1])\right|=4$. A similar argument leads also to $\left|\pi^{-1}([-\alpha, 1])\right|=4$. So we have in total $1 \cdot 3+10 \cdot 4=43$ points in $\pi^{-1}(B) \subset C_{F}$.
(c) Since the singularities are a subset of R, we conclude from $F_{X}(X, Y, Z)=$ $5 X^{4}$ and $F_{Z}(X, Y, Z)=-10 Y^{3} Z$ that the only point in $\operatorname{Sing}\left(C_{F}\right)$ is $P=[0,0,1]$, which is one of the two points in $\pi^{-1}([0,1])$.
(d) We only need to carry out the blow-up procedure in the singular point P. We first choose affine coordinates via the identification $(x, y) \mapsto$ $[x, y, 1]$ and obtain the affine polynomial

$$
f(x, y)=F(x, y, 1)=x^{5}+3 y^{5}-5 y^{3} .
$$

We see that we have a triple tangent line given by $y=0$. So we can blow-up in U_{0}. We set $(x, y)=\left(x_{1}, x_{1} y_{1}\right)$ and obtain

$$
f\left(x_{1}, x_{1} y_{1}\right)=x_{1}^{3}\left(x_{1}^{2}+3 x_{1}^{2} y_{1}^{5}-5 y_{1}^{3}\right),
$$

so the strict transform of f in U_{0} is

$$
f^{(1)}\left(x_{1}, y_{1}\right)=x_{1}^{2}+3 x_{1}^{2} y_{1}^{5}-5 y_{1}^{3} .
$$

The preimages of $(x, y)=(0,0)$ under the strict transform are given by $x_{1}=x=0$ and $f^{(1)}\left(0, y_{1}\right)=-5 y_{1}^{3}=0$, i.e., only $\left(x_{1}, y_{1}\right)=(0,0)$. This is still a singular point of $C_{f^{(1)}}$ since

$$
f_{x_{1}}^{(1)}\left(x_{1}, y_{1}\right)=2 x_{1}+6 x_{1} y_{1}^{5}, \quad f_{y_{1}}^{(1)}\left(x_{1}, y_{1}\right)=15 x_{1}^{2} y_{1}^{4}-15 y_{1}^{2} .
$$

At $(0,0) \in C_{f^{(1)}}$, we have again a double tangent line given by $x_{1}=0$. So we need to carry out the next blow-up again in U_{1}. We obtain

$$
f^{(1)}\left(x_{2} y_{2}, y_{2}\right)=y_{2}^{2}\left(x_{2}^{2}+3 x_{2}^{2} y_{2}^{5}-5 y_{2}\right),
$$

so the strict transform of $f^{(1)}$ in U_{1} is

$$
f^{(2)}\left(x_{2}, y_{2}\right)=x_{2}^{2}+3 x_{2}^{2} y_{2}^{5}-5 y_{2} .
$$

The preimages of $\left(x_{1}, y_{1}\right)=(0,0)$ under the strict transform are given by $y_{2}=y_{1}=0$ and $f^{(2)}\left(x_{2}, 0\right)=x_{2}^{2}=0$, i.e., only $\left(x_{2}, y_{2}\right)=(0,0)$. Since $f_{y_{2}}^{(2)}\left(x_{2}, y_{2}\right)=-5 \neq 0$, the point $(0,0) \in C_{f^{(2)}}$ is no longer singular and the blow-up process stops with a non-singular model $\psi: \widetilde{C} \rightarrow C_{F}$.
(e) Since B contains 11 points, we know from a result in the lectures that there exists a triangulation \mathcal{T} of $\mathbb{P}_{\mathbb{C}}^{1}$ with the 11 points of B, and $3 \cdot 11-$ $6=27$ edges and $2 \cdot 11-4=18$ triangles. The preimage $\pi^{-1}(B) \subset C_{F}$ contains 43 points, and the preimage of P under the blow-up procedure $\psi: \widetilde{C} \rightarrow C_{F}$ consists of only one point. Since $\operatorname{deg} F=5$, we end up with an induced triangulation of \widetilde{C} with $V=43$ vertices, $E=5 \cdot 27=135$ edges and $F=5 \cdot 18=90$ triangles. This implies that \widetilde{C} has the Euler number

$$
\chi(\widetilde{C})=V-E+F=43-135+90=-2 .
$$

(f) Using the relation $\chi(\widetilde{C})=2-2 g(\widetilde{C})$, we conclude that the genus of the non-singular model \widetilde{C} is

$$
g(\widetilde{C})=1-\frac{\chi(\widetilde{C})}{2}=1-\frac{-2}{2}=2
$$

