Algebraic Geometry III/IV

Solutions, set 8.

Exercise 11. Recall that $F(X, Y, Z)=Y^{5}-X^{5}+X^{2} Z^{3}$.
(a) We have $F(0,1,0)=1^{5}-0^{5}+0^{5}=1 \neq 0$, i.e., $[0,1,0] \notin C_{F}$. This guarantees that the map $\pi: C_{F} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}, \pi([a, b, c])=[a, c]$ is well defined.
(b) We have $F_{Y}(X, Y, Z)=5 Y^{4}$. So the solutions of $F(P)=F_{Y}(P)=0$ are given by $Y=0$ and $F(X, 0, Z)=X^{2}\left(Z^{3}-X^{3}\right)$, i.e., $P_{1}=[0,0,1]$ and $P_{2}=[1,0,1], P_{3}=\left[1,0, \zeta_{3}\right], P_{4}=\left[1,0, \zeta_{3}^{2}\right]$ with $\zeta_{3}=e^{2 \pi i / 3}$. Thus we have $R=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ and

$$
B=\pi(R)=\left\{[0,1],[1,1],\left[1, \zeta_{3}\right],\left[1, \zeta_{3}^{2}\right]\right\} .
$$

We see that B contains 4 points.
(c) Since the singularities are a subset of R, we only need to check for which of these points $P \in R$ we have $F_{X}(P)=F_{Z}(P)=0$. We have

$$
F_{X}(X, Y, Z)=-5 X^{4}+2 X Z^{3}, \quad, F_{Z}(X, Y, Z)=3 X^{2} Z^{2}
$$

Since $F_{Z}\left(1,0, \zeta_{3}^{i}\right)=3 \zeta_{3}^{2 i} \neq 0$, we see that $P_{2}, P_{3}, P_{4} \notin \operatorname{Sing}\left(C_{F}\right)$. We conclude that $\operatorname{Sing}\left(C_{F}\right)=\left\{P_{1}\right\} \subset R$, since

$$
F_{X}(0,0,1)=0, \quad F_{Z}(0,0,1)=0 .
$$

(d) We only need to carry out the blow-up procedure in the singular point P_{1}. We first choose affine coordinates via the identification $(x, y) \mapsto$ $[x, y, 1]$ and obtain the affine polynomial

$$
f(x, y)=F(x, y, 1)=x^{2}+y^{5}-x^{5} .
$$

We see that we have a double tangent line given by $x=0$. So we need to consider the blow-up in U_{1}. We set $(x, y)=\left(x_{1} y_{1}, y_{1}\right)$ and obtain

$$
f\left(x_{1} y_{1}, y_{1}\right)=y_{1}^{2}\left(x_{1}^{2}+y_{1}^{3}-x_{1}^{5} y_{1}^{3}\right),
$$

so the strict transform of f in U_{1} is

$$
f^{(1)}\left(x_{1}, y_{1}\right)=x_{1}^{2}+y_{1}^{3}-x_{1}^{5} y_{1}^{3} .
$$

The preimages of $(x, y)=(0,0)$ under the strict transform are given by $y_{1}=y=0$ and $f^{(1)}\left(x_{1}, 0\right)=x_{1}^{2}=0$, i.e., only $\left(x_{1}, y_{1}\right)=(0,0)$, which is still a singular point of $C_{f_{(1)}}$ since

$$
f_{x_{1}}^{(1)}\left(x_{1}, y_{1}\right)=2 x_{1}-5 x_{1}^{4} y_{1}^{3}, \quad f_{y_{1}}^{(1)}\left(x_{1}, y_{1}\right)=3 y_{1}^{2}-3 x_{1}^{5} y_{1}^{2} .
$$

At $(0,0) \in C_{f^{(1)}}$, we have again a double tangent line given by $x_{1}=0$. So we need to carry out the next blow-up again in U_{1}. We obtain

$$
f^{(1)}\left(x_{2} y_{2}, y_{2}\right)=y_{2}^{2}\left(y_{2}+x_{2}^{2}-x_{2}^{5} y_{2}^{6}\right)
$$

so the strict transform of $f^{(1)}$ in U_{1} is

$$
f^{(2)}\left(x_{2}, y_{2}\right)=y_{2}+x_{2}^{2}-x_{2}^{5} y_{2}^{6} .
$$

The preimages of $\left(x_{1}, y_{1}\right)=(0,0)$ under the strict transform are given by $y_{2}=y_{1}=0$ and $f^{(2)}\left(x_{2}, 0\right)=x_{2}^{2}=0$, i.e., only $\left(x_{2}, y_{2}\right)=(0,0)$. Since $f_{y_{2}}^{(2)}\left(x_{2}, y_{2}\right)=1 \neq 0$, the point $(0,0) \in C_{f^{(2)}}$ is no longer singular and the blow-up process stops with a non-singular model $\psi: \widetilde{C} \rightarrow C_{F}$.
(e) Since B contains the 4 points $P_{1}, P_{2}, P_{3}, P_{4} \in \mathbb{P}_{\mathbb{C}}^{1}$, we know from a result in the lectures that there exists a triangulation \mathcal{T} of $\mathbb{P}_{\mathbb{C}}^{1}$ with the four vertices $P_{1}, P_{2}, P_{3}, P_{4}$ and $3 \cdot 4-6=6$ edges and $2 \cdot 4-4=4$ triangles. The preimage $R=\pi^{-1}(B) \subset C_{F}$ contains also 4 points, and the preimage of R under the blow-up procedure $\psi: \widetilde{C} \rightarrow C_{F}$ consists again of only four different points. Since $\operatorname{deg} F=5$, we end up with an induced triangulation of \widetilde{C} with $V=4$ vertices, $E=5 \cdot 6=30$ edges and $F=5 \cdot 4=20$ triangles. This implies that \widetilde{C} has the Euler number

$$
\chi(\widetilde{C})=V-E+F=4-30+20=-6 .
$$

(f) Using the relation $\chi(\widetilde{C})=2-2 g(\widetilde{C})$, we conclude that the genus of the non-singular model \widetilde{C} is

$$
g(\widetilde{C})=1-\frac{\chi(\widetilde{C})}{2}=1-\frac{-6}{2}=4
$$

