Algebraic Geometry III/IV

Solutions, set 7.

Exercise 10.

(a) Let $f(x, y)=x^{2}-x^{4}-y^{4}$. We have

$$
\begin{aligned}
& f_{x}(x, y)=2 x(1-\sqrt{2} x)(1+\sqrt{2} x) \\
& f_{y}(x, y)=-4 y^{3}
\end{aligned}
$$

The condition $f_{y}(x, y)=0$ implies $y=0$ and, because of $f(x, 0)=$ $x^{2}(1-x)(1+x)$, we see that $f(x, y)=f_{x}(x, y)=f_{y}(x, y)=0$ has the only solution $(x, y)=(0,0)$. Next we calculate the tangent lines of C_{f} at $(0,0)$. We have

$$
f(x, y)=f_{2}(x, y)+f_{4}(x, y)
$$

with $f_{2}(x, y)=x^{2}$ and $f_{4}(x, y)=-x^{4}-y^{4}$. Therefore, we have a double tangent line given by $x=0$. So we need to consider the blow-up in U_{1}. We set $(x, y)=\left(x_{1} y_{1}, y_{1}\right)$ and obtain

$$
f\left(x_{1} y_{1}, y_{1}\right)=y_{1}^{2}\left(x_{1}^{2}-x_{1}^{4} y_{1}^{2}-y_{1}^{2}\right)
$$

so the strict transform of f in U_{1} is

$$
f^{(1)}\left(x_{1}, y_{1}\right)=x_{1}^{2}-x_{1}^{4} y_{1}^{2}-y_{1}^{2} .
$$

We now have

$$
\begin{aligned}
& f_{x_{1}}^{(1)}\left(x_{1}, y_{1}\right)=2 x_{1}\left(1-2 x_{1}^{2} y_{1}^{2}\right), \\
& f_{y_{1}}^{(1)}\left(x_{1}, y_{1}\right)=-2 y_{1}\left(x_{1}^{4}+1\right) .
\end{aligned}
$$

The preimages of $(x, y)=(0,0)$ under the strict transform are given by $y_{1}=y=0$ and $f^{(1)}\left(x_{1}, 0\right)=x_{1}^{2}=0$, i.e., only $\left(x_{1}, y_{1}\right)=(0,0)$, which
is still a singular point of $C_{f^{(1)}}$. Next we calculate the tangent lines of $C_{f^{(1)}}$ at $(0,0)$. We have

$$
f^{(1)}\left(x_{1}, y_{1}\right)=f_{2}^{(1)}\left(x_{1}, y_{1}\right)+f_{6}^{(1)}\left(x_{1}, y_{1}\right)
$$

with $f_{2}^{(1)}\left(x_{1}, y_{1}\right)=\left(x_{1}-y_{1}\right)\left(x_{1}+y_{1}\right)$ and $f_{6}^{(1)}\left(x_{1}, y_{1}\right)=-x_{1}^{4} y_{1}^{2}$. Therefore, we have the two tangent lines $x_{1}=y_{1}$ and $x_{1}=-y_{1}$. So we can consider the next blow-up in U_{0}. We set $\left(x_{1}, y_{1}\right)=\left(x_{2}, x_{2} y_{2}\right)$ and obtain

$$
f^{(1)}\left(x_{2}, x_{2} y_{2}\right)=x_{2}^{2}\left(1-x_{2}^{4} y_{2}^{2}-y_{2}^{2}\right)
$$

so the strict transform of $f^{(1)}$ in U_{0} is

$$
f^{(2)}\left(x_{2}, y_{2}\right)=1-x_{2}^{4} y_{2}^{2}-y_{2}^{2} .
$$

The preimages of $\left(x_{1}, y_{1}\right)=(0,0)$ under the strict transform are given by $x_{2}=x_{1}=0$ and $f^{(2)}\left(0, y_{2}\right)=1-y_{2}^{2}=0$, i.e., $\left(x_{2}, y_{2}\right)=(0, \pm 1)$. We now have

$$
\begin{aligned}
f_{x_{2}}^{(2)}\left(x_{2}, y_{2}\right) & =-4 x_{2}^{3} y_{2}^{2} \\
f_{y_{2}}^{(2)}\left(x_{2}, y_{2}\right) & =-2 y_{2}\left(x_{2}^{4}+1\right) .
\end{aligned}
$$

Since $f_{y_{2}}^{(2)}(0, \pm 1)=\mp 2 \neq 0$, all singularities are now resolved and the blow-up process stops.
(b) Let $g(x, y)=y^{3}-x^{5}$. We have

$$
\begin{aligned}
g_{x}(x, y) & =-5 x^{4}, \\
g_{y}(x, y) & =3 y^{2},
\end{aligned}
$$

so $g_{x}(x, y)=g_{y}(x, y)=0$ implies that $(x, y)=(0,0)$. Therefore, the only singularity of C_{g} is $(0,0)$. The tangent lines of C_{g} at $(0,0)$ are $y=0$ (trice) and we can consider the blow-up in U_{0}. We set $(x, y)=\left(x_{1}, x_{1} y_{1}\right)$ and obtain

$$
g\left(x_{1}, x_{1} y_{1}\right)=x_{1}^{3}\left(y_{1}^{3}-x_{1}^{2}\right),
$$

i.e., the strict transform of g in U_{0} is

$$
g^{(1)}\left(x_{1}, y_{1}\right)=y_{1}^{3}-x_{1}^{2} .
$$

The preimages of $(x, y)=(0,0)$ under the strict transform are given by $x_{1}=x=0$ and $g^{(1)}\left(0, y_{1}\right)=y_{1}^{3}=0$, i.e., $\left(x_{1}, y_{1}\right)=(0,0)$. Since

$$
\begin{aligned}
& g_{x_{1}}^{(1)}\left(x_{1}, y_{1}\right)=-2 x_{1}, \\
& g_{y_{1}}^{(1)}\left(x_{1}, y_{1}\right)=-3 y_{1}^{2},
\end{aligned}
$$

the point $(0,0)$ is still a singularity of $C_{g^{(1)}}$. The tangent lines of $C_{g^{(1)}}$ at $(0,0)$ are $x=0$ (twice) and we need to carry out the blow-up in U_{1}. We set $\left(x_{1}, y_{1}\right)=\left(x_{2} y_{2}, y_{2}\right)$ and obtain

$$
g^{(1)}\left(x_{2} y_{2}, y_{2}\right)=y_{2}^{2}\left(y_{2}-x_{2}^{2}\right) .
$$

The strict transform of $g^{(1)}$ in U_{1} is therefore

$$
g^{(2)}\left(x_{2}, y_{2}\right)=y_{2}-x_{2}^{2} .
$$

The preimages of $\left(x_{1}, y_{1}\right)=(0,0)$ under the strict transform are given by $y_{2}=y_{1}=0$ and $g^{(2)}\left(x_{2}, 0\right)=-x_{2}^{2}=0$, i.e., $\left(x_{2}, y_{2}\right)=(0,0)$. Since $g_{y_{2}}^{(2)}\left(x_{2}, y_{2}\right)=1 \neq 0$, all singularities are resolved and the blow-up process stops.

