Algebraic Geometry III/IV

Solutions, set 6.

Exercise 9. Let $C \subset \mathbb{P}_{\mathbb{C}}^{2}$ be a non-singular cubic. As mentioned in the exercise, we can projectively transform C into C_{F} with

$$
F(X, Y, Z)=(\alpha X+\beta Y+\gamma Z) Y Z+G(X, Z)
$$

where $\beta \neq 0$ and

$$
G(X, Z)=a X^{3}+b X^{2} Z+d X Z^{2}+g Z^{3}
$$

with $a \neq 0$. Combining both expressions and substituting $c=\alpha, e=\beta$ and $f=\gamma$, we end up with

$$
F(X, Y, Z)=a X^{3}+b X^{2} Z+c X Y Z+d X Z^{2}+e Y^{2} Z+f Y Z^{2}+g Z^{3}
$$

where $a \neq 0$ and $e \neq 0$.
(a) The substitution yields

$$
\begin{array}{r}
a X^{3}+b X^{2} Z+c X\left(Y-\frac{c}{2 e} X-\frac{f}{2 e} Z\right) Z+d X Z^{2}+e\left(Y-\frac{c}{2 e} X-\frac{f}{2 e} Z\right)^{2} Z \\
+f\left(Y-\frac{c}{2 e} X-\frac{f}{2 e} Z\right) Z^{2}+g Z^{3}=a X^{3}+b X^{2} Z+c X Y Z-\frac{c^{2}}{2 e} X^{2} Z-\frac{c f}{2 e} X Z^{2} \\
+d X Z^{2}+e Y^{2} Z+\frac{c^{2}}{4 e} X^{2} Z+\frac{f^{2}}{4 e} Z^{3}-c X Y Z-f Y Z^{2}+\frac{c f}{2 e} X Z^{2}+f Y Z^{2}-\frac{c f}{2 e} X Z^{2} \\
\quad-\frac{f^{2}}{2 e} Z^{3}+g Z^{3}=a X^{3}+b^{\prime} X^{2} Z+d^{\prime} X Z^{2}+e Y^{2} Z+g^{\prime} Z^{3},
\end{array}
$$

with the same non-zero coefficients a and e of X^{3} and $Y^{2} Z$.
(b) The substitution yields

$$
\begin{aligned}
& a^{\prime}\left(X-\frac{b^{\prime}}{3 a^{\prime}} Z\right)^{3}+b^{\prime}\left(X-\frac{b^{\prime}}{3 a^{\prime}} Z\right)^{2} Z+d^{\prime}\left(X-\frac{b^{\prime}}{3 a^{\prime}} Z\right) Z^{2}+e^{\prime} Y^{2} Z+g^{\prime} Z^{3} \\
&=a^{\prime} X^{3}+\left(-3 a^{\prime} \frac{b^{\prime}}{3 a^{\prime}}+b^{\prime}\right) X^{2} Z+d^{\prime \prime} X Z^{2}+e^{\prime} Y^{2} Z+g^{\prime \prime} Z^{3} \\
&=a^{\prime} X^{3}+d^{\prime \prime} X Z^{2}+e^{\prime} Y^{2} Z+g^{\prime \prime} Z^{3}
\end{aligned}
$$

with the same non-zero coefficients a^{\prime} and e^{\prime} of X^{3} and $Y^{2} Z$.
(c) Since $e^{\prime \prime} \neq 0$, we can arrange $e^{\prime \prime}=1$ by substituting Z by $\frac{1}{e^{\prime \prime}} Z$. Since $a^{\prime \prime} \neq 0$, we can arrange $a^{\prime \prime}=-4$ by rescaling X appropriately. So we end up with

$$
Y^{2} Z=4 X^{3}-d^{\prime \prime} X Z^{2}-g^{\prime \prime} Z^{3}
$$

Choosing $g_{2}=d^{\prime \prime}$ and $g_{3}=g^{\prime \prime}$, we obtain the desired Weierstraß normal form.
(d) Assume that $C=C_{F}$ with $F(X, Y, Z)=Y^{2} Z-4 X^{3}+g_{2} X Z^{2}+g_{3} Z^{3}$ is a singular cubic. Then there is a point $P=[a, b, c] \in \mathbb{P}_{\mathbb{C}}^{2}$ with $F(P)=$ $F_{X}(P)=F_{Y}(P)+F_{Z}(P)=0$. We have

$$
\begin{aligned}
F(X, Y, Z) & =Y^{2} Z-4 X^{3}+g_{2} X Z^{2}+g_{3} Z^{3} \\
F_{X}(X, Y, Z) & =-12 X^{2}+g_{2} Z^{2} \\
F_{Y}(X, Y, Z) & =2 Y Z \\
F_{Z}(X, Y, Z) & =Y^{2}+2 g_{2} X Z+3 g_{3} Z^{2}
\end{aligned}
$$

From $F_{Y}(P)=0$ we conclude that $b=0$ or $c=0$. If $c=0$, we conclude from $F_{X}(P)=0$ that $a=0$ and from $F_{Z}(P)=0$ that also $b=0$, which is a contradiction. Therefore, we must have $c \neq 0$ and $b=0$. From $b=0$ and $F_{Z}(P)=0$, we conclude that $2 g_{2} a c+3 g_{3} c^{2}=0$. Since $c \neq 0$, this implies that $2 g_{2} a+3 g_{3} c=0$. We conclude from $0=F_{X}(P)=-12 a^{2}+g_{2} c^{2}$ that
$0=-12 g_{2}^{2} a^{2}+g_{2}^{3} c^{2}=-3\left(2 g_{2} a\right)^{2}+g_{2}^{3} c^{2}=-3\left(-3 g_{3} c\right)^{2}+g_{2}^{3} c^{2}=\left(-27 g_{3}^{2}+g_{2}^{3}\right) c^{2}$.
Since $c \neq 0$, we finally conclude that $g_{2}^{3}-27 g_{3}^{2}=0$.
Conversely, let $g_{2}^{3}-27 g_{3}^{2}=0$. In the case $\left(g_{2}, g_{3}\right)=(0,0)$, we choose $P=[0,0,1] \in \mathbb{P}_{\mathbb{C}}^{2}$, and we see that $F(P)=F_{X}(P)=F_{Y}(P)=F_{Z}(P)=0$, i.e., C_{F} is singular. If $\left(g_{2}, g_{3}\right) \neq(0,0)$, we choose $P=\left[3 g_{3}, 0,-2 g_{2}\right] \in \mathbb{P}_{\mathbb{C}}^{2}$. Then we have

$$
\begin{aligned}
F\left(3 g_{3}, 0,-2 g_{2}\right) & =-108 g_{3}^{3}+12 g_{2}^{3} g_{3}-8 g_{2}^{3} g_{3} \\
& =4 g_{3}\left(g_{2}^{3}-27 g_{3}^{2}\right)=0 \\
F_{X}\left(3 g_{3}, 0,-2 g_{2}\right) & =-108 g_{3}^{2}+4 g_{2}^{3}=4\left(g_{2}^{3}-27 g_{3}^{2}\right)=0, \\
F_{Y}\left(3 g_{3}, 0,-2 g_{2}\right) & =0, \\
F_{Z}\left(3 g_{3}, 0,-2 g_{2}\right) & =-12 g_{2}^{2} g_{3}+12 g_{2}^{2} g_{3}=0 .
\end{aligned}
$$

This shows that C_{F} is singular.

