Algebraic Geometry III/IV

Solutions, set 5.

Exercise 8.

(a) Let $F(X, Y, Z)=Y^{2} Z-4 X^{3}+g_{2} X Z^{2}+g_{3} Z^{3}$ with $g_{2}^{3}-27 g_{3}^{2} \neq 0$. Then

$$
\begin{aligned}
F_{X} & =-12 X^{2}+g_{2} Z^{2} \\
F_{Y} & =2 Y Z \\
F_{Z} & =Y^{2}+2 g_{2} X Z+3 g_{3} Z^{2}
\end{aligned}
$$

and

$$
F_{X X}=-24 X, \quad F_{X Y}=0, \quad F_{X Z}=2 g_{2} Z,
$$

and

$$
F_{Y Y}=2 Z, \quad F_{Y Z}=2 Y, \quad F_{Z Z}=2 g_{2} X+6 g_{3} Z
$$

Therefore,

$$
\mathcal{H}_{F}(X, Y, Z)=\operatorname{det}\left(\begin{array}{ccc}
-24 X & 0 & 2 g_{2} Z \\
0 & 2 Z & 2 Y \\
2 g_{2} Z & 2 Y & 2 g_{2} X+6 g_{3} Z
\end{array}\right)
$$

and

$$
\mathcal{H}_{F}(0,1,0)=\operatorname{det}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 2 \\
0 & 2 & 0
\end{array}\right)=0
$$

Since $F(0,1,0)=0$ and F is non-singular, we conclude that $\mathcal{O}=$ [$0,1,0$] is a flex of C_{F}. The tangent line L_{0} of C_{F} at \mathcal{O} is given by

$$
X F_{X}(0,1,0)+Y F_{Y}(0,1,0)+Z F_{Z}(0,1,0)=Z=0
$$

It was mentioned in the lectures that the tangent line of C_{F} at a flex has only intersection point with C_{F}, namely, the flex itself, and that the intersection multiplicity at this point is 3 .
(b) First of all, we see that $[0,1,0] \in C_{F}$ since $F(0,1,0)=0-4 \cdot 0+g_{2} 0+$ $g_{3} 0=0$. Next, we obtain

$$
F\left(\wp(z), \wp^{\prime}(z), 1\right)=\wp^{\prime}(z)^{2}-4 \wp(z)^{3}+g_{2} \wp(z)+g_{3}=0,
$$

employing the differential equation for the Weierstrass $\wp-$-function. Next, we prove injectivity of Φ : Let $\Phi\left(z_{1}+\Lambda\right)=\Phi\left(z_{2}+\Lambda\right)$ for $z_{1}, z_{2} \in \mathcal{F}$. We check easily that $z_{1}=z_{2}$ in the case if one of z_{1}, z_{2} is equal to 0 . Now assume that $z_{1} \neq 0 \neq z_{2}$ and $z_{1} \neq z_{2}$. This implies that $\wp\left(z_{1}\right)=\wp\left(z_{2}\right) \neq \infty$ and $\wp^{\prime}\left(z_{1}\right)=\wp^{\prime}\left(z_{2}\right) \neq \infty$. Since \wp is an elliptic function of order 2 and $z=0$ is a pole of order 2 , we conclude from (i) and (ii) that $z_{1}+z_{2} \in \Lambda$. Since \wp^{\prime} is an elliptic function of order 3 and $z=0$ is a pole of order 3 , we conclude from (i) and (ii) that there must exist $z_{3} \in \mathbb{C}$ with $\wp^{\prime}\left(z_{3}\right)=\wp^{\prime}\left(z_{1}\right)$ and $z_{1}+z_{2}+z_{3} \in \Lambda$. Both results together imply that $z_{3} \in \Lambda$, but \wp^{\prime} has then a pole at z_{3}. This implies that $\infty \neq \wp^{\prime}\left(z_{1}\right)=\wp^{\prime}\left(z_{3}\right)=\infty$, and we have a contradiction.
(c) Let $P=[a, b, 0] \in C_{F}$. Then we have $0=F(a, b, 0)=-4 a^{3}$, i.e., $a=0$ and $P=[0,1,0]=\mathcal{O}$. Therefore, any point $P \backslash\{\mathcal{O}\}$ is of th form $P=$ $[a, b, 1]$. The projective line through $\mathcal{O}=[0,1,0]$ and $P=[a, b, 1] \in C_{F}$ is $L=\left\{[s a, s b+t, s] \mid(s, t) \in \mathbb{C}^{2} \backslash 0\right\}$. Note that $P \in C_{F}$ means that

$$
0=F(a, b, 1)=b^{2}-4 a^{3}-g_{2} a-g_{3} .
$$

The third point of intersection between C_{F} and L is then $[a,-b, 1] \in L$, since

$$
F(a,-b, 1)=(-b)^{2}-4 a^{3}-g_{2} a-g_{3}=F(a, b, 1)=0 .
$$

This shows that

$$
\mathcal{O} * P=[a,-b, 1] .
$$

(d) If $(\alpha, \beta)=(0,0)$, the projective line L would be given by $L: Z=0$ and, therefore, coincide with L_{0}. Therefore, $(\alpha, \beta) \neq(0,0)$.
Assume first that $\beta \neq 0$ and $\mathcal{O}=[0,1,0]$ cannot lie on L. Therefore, all three distinct intersection points P_{1}, P_{2}, P_{3} differ from \mathcal{O}. Since the points on $C_{F} \backslash\{\mathcal{O}\}$ are of the form $\left[\wp(z), \wp^{\prime}(z), 1\right]$, the preimages $z_{j} \in$ mathcalF of the intersection points P_{j} with L must satisfy $\alpha \wp(z)+$ $\beta \wp^{\prime}(z)+\gamma=0$. Let $g=\alpha \wp+\beta \wp^{\prime}+\gamma$. Since $\beta \neq 0, g$ is an elliptic
function of order 3 with only pole in \mathcal{F} at the origin and of order 3 . As mentioned before, the three points $z_{1}, z_{2}, z_{3} \in \mathcal{F}$ with $\Phi\left(z_{j}+\Lambda\right)=P_{j}$ for $j=1,2,3$ must satisfy $g\left(z_{j}\right)=0$. We conclude from (ii) on the exercise sheet that $z_{1}+z_{2}+z_{3} \in \Lambda$.

Assume next that $\beta=0$. Then $\alpha \neq 0$ and $\mathcal{O}=[0,1,0]$ is one of the three distinct intersection points. W.l.o.g., we assume that $P_{1}=\mathcal{O}$. Then $P_{1}=\Phi\left(0+\Lambda\right.$. This means that the preimage of P_{1} is $z_{1}=0 \in \mathcal{F}$. As before, the preimages z_{2}, z_{3} of the remaining two intersection points P_{2}, P_{3} with L must satisfy $g\left(z_{j}\right)=0$ with $g=\alpha \wp+\gamma . g$ is now an elliptic function of order 2 with only pole in \mathcal{F} at the origin and of order 2. Again, we conclude from (ii) on the exercise sheet that $z_{2}+z+3 \in \Lambda$ which implies, since $z_{1}=0$, also $z_{1}+z_{2}+z_{3} \in \Lambda$.
(e) Let $P_{1}=\Phi\left(z_{1}+\Lambda\right)$ and $P_{2}=\Phi\left(z_{2}+\Lambda\right)$. Let $P_{3}=P_{1} * P_{2}$ and $z_{3} \in \mathcal{F}$ with $\Phi\left(z_{3}+\Lambda\right)=P_{3}$. We conclude from (c) that $z_{1}+z_{2}+z_{3} \in \Lambda$. We distinguish two cases.
Assume first that $z_{3}=0$, i.e., $P_{3}=\mathcal{O}$. Since \mathcal{O} is a flex of C_{F}, we conclude that $\mathcal{O}=P_{1}+P_{2}=\Phi\left(z_{1}+\Lambda\right)+\Phi\left(z_{2}+\Lambda\right)$. On the other hand we conclude from $z_{3}=0$ and $z_{1}+z_{2}+z_{3} \in \Lambda$ that $z_{1}+z_{2} \in \Lambda$ and, therefore, $\Phi\left(z_{1}+z_{2}+\Lambda\right)=\Phi(0+\Lambda)=\mathcal{O}$, proving (3) in this case. Assume next that $z_{3} \neq 0$, i.e., $P_{3} \neq \mathcal{O}$. We conclude from $z_{1}+z_{2}+z_{3} \in$ Λ and $-\left(z_{1}+z_{2}\right) \notin \Lambda$ (because of $z_{3} \neq 0$) that

$$
\begin{aligned}
P_{1} * P_{2}=P_{3} & =\Phi\left(-\left(z_{1}+z_{2}\right)+\Lambda\right) \\
& =\left[\wp\left(-\left(z_{1}+z_{2}\right)\right), \wp^{\prime}\left(-\left(z_{1}+z_{2}\right)\right), 1\right] \\
& =\left[\wp\left(z_{1}+z_{2}\right),-\wp^{\prime}\left(z_{1}+z_{2}\right), 1\right] .
\end{aligned}
$$

We conclude from (b) that

$$
P_{1}+P_{2}=\mathcal{O} * P_{3}=\left[\wp\left(z_{1}+z_{2}\right), \wp^{\prime}\left(z_{1}+z_{2}\right), 1\right]=\Phi\left(z_{1}+z_{2}+\Lambda\right),
$$

proving (3) in this case.

